Violympic toán 8

H24

Cho tam giác nhọn ABC Các đường cao AD, BE, CF cắt nhau tại H chứng minh rằng: a) Tâm giáo AEF đồng dạng với tam giác ABC b) BH.BE + CH.CF = BC^2 c) AD.HD

NT
14 tháng 4 2021 lúc 21:35

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{BAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{EAF}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

Bình luận (1)
H24
22 tháng 4 2021 lúc 20:44
Câu b xét 2triangs đồng dạng
Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
MK
Xem chi tiết
HH
Xem chi tiết
BB
Xem chi tiết
NA
Xem chi tiết
LP
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết