TQ

Cho tam giác MNP vuông tại M (MN<MP). Vẽ đường cao MH(H thuộc NP)

a. Chứng minh tam giác MNP đồng dạng với tam giác HNM

b. Chứng minh MN^2=NH.NP

c. Vẽ tia phân giác MK của góc NMP (K thuộc NP). Biết MN=7,2 cm và MP=9,6 cm. Tính độ dài các đoạn thẳng NP, NH và MK.

UT
18 tháng 4 2021 lúc 15:12

tự vẽ hình nhé 

a, Xét \(\Delta\) MNP và \(\Delta\) HNM

< MNP chung 

<NMP=<NHM(=90\(^0\) )

b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\) 

=> \(MN^2=NP\cdot NH\)

c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có

\(MN^2+MP^2=NP^2\)

=> \(NP^2=144\Rightarrow NP=12cm\)

Ta có \(MN^2=NH\cdot NP\)

Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)

 

 

Bình luận (1)
NA
9 tháng 5 2023 lúc 5:10

Mình nghĩ MK nên áp dụng ta lét nhé

7,2/x = 12/9,6-x

<=>7,2 . (9.6-x) = 12.x

<=>69,12 - 7,2x = 12x

<=>69,12           = 12x + 7,2x

<=> 69,12          = 19, 2

<=> x                 = 69,12 : 19,2 = 3,6
Vậy MK bằng 3,6cm
(mình ko chắc đúng ko nhưng theo mình là vậy)

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
TL
Xem chi tiết
NA
Xem chi tiết
MQ
Xem chi tiết
NT
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết
NA
Xem chi tiết
NN
Xem chi tiết