giải bài toán tam giác MNP cân tại M trên cạnh MN lấy K trên cạnh MP lấy điểm D sao cho MK=DP đường trung trục của MP cắt đường trung trực của DK tại O C/m góc MKO=gócPDO;O thuộc đường trung trực của MN;MO là tia p/g của góc NMP
Cho tam giác MNP cân tại M, Lấy K trên MN, D trên MP sao cho MK = DP, trung trực MP cắt trung trực DK tại O. Chứng minh:
a) Góc MKO = góc PDO
b) O thuộc đường trung trực của MN
c) MO là phân giác góc NMP
Cho Tam giác MNP có MN>MP. Trên cạnh MN lấy điểm E sao cho NE=MP. Các đường trung trực của PE và MN cắt nhau tại O. Chứng Minh tam giác MOP = tam giác NOE. giải thích cách thực hiện
Cho tam giác MNP nhọn có MN < MP. Trên cạnh MP lấy điểm B sao cho MB = MN. Lấy O là trung điểm của NB.
a) Chứng minh: tam giác MNP = tam giác MBO.
b)Kéo dài MO cắt NP tại A. Chứng minh: AN = AB. c)Đường thẳng P song song với MP cắt MO kéo dài tại điểm H, cắt MN kéo dài tại điểm
c) Chứng minh: MH vuông góc CP và MC = MP.
Cho tam giác MNP nhọn có MN < MP. Trên cạnh MP lấy điểm B sao cho MB = MN. Lấy O là trung điểm của NB.
a)Chứng minh: tam giác MNP bằng tam giác MBO.
b)Kéo dài MO cắt NP tại A. Chứng minh: AN = AB.
c)Đường thẳng P song song với MP cắt MO kéo dài tại điểm H, cắt MN kéo dài tại điểm C. Chứng minh: MH vuông góc CP và MC = MP.
d)Chứng minh 3 điểm B, A, C thẳng hàng.
Cho tam giác MNP nhọn có MN < MP. Trên cạnh MP lấy điểm B sao cho MB = MN. Lấy O là trung điểm của NB.
a)Chứng minh: tam giác MNP bằng tam giác MBO.
b)Kéo dài MO cắt NP tại A. Chứng minh: AN = AB.
c)Đường thẳng P song song với MP cắt MO kéo dài tại điểm H, cắt MN kéo dài tại điểm C. Chứng minh: MH vuông góc CP và MC = MP.
d)Chứng minh 3 điểm B, A, C thẳng hàng.
Mn giúp mk bài này vs ạ
Bài toán 1: Cho tam giác ABC cân tại A, trung tuyến AM. Đường trung trực của AB cắt AM ở O. Chứng minh rằng điểm 0 cách đều 3 đỉnh của tam giác ABC.
Bài toán 2: Cho tam giác cân ABC (AB = AC). Đường trung trực của AC cắt AB ở D. Biết CD là tia phân giác của góc ACB. Tính các góc của tam giác ABC.
Bài toán 3: Cho tam giác đều ABC. Trên các cạnh AB, BC, CA lấy theo thứ tự ba điểm M, N, P sao cho AM = BN = CP.
a) Chứng minh tam giác MNP là tam giác đều b) Gọi O là giao điểm các đường trung trực của tam giác ABC. Chứng minh rằng 0 cũng là
giao điểm của các đường trung trực của tam giác MNP.
Cho MNP nhọn, MD vuông góc với NP tại D. Xác định I ; J sao cho MN là trung trực của DI, MP là trung trực của DJ ; IJ cắt MN ; MP lần lượt ở L và K. Chứng minh rằng :
a) MIJ cân
b) DM là tia phân giác của góc LDK
c) NK MP ; PL MN
d) Trực tâm của MNP chính là giao của 3 đường phân giác của DLK
e) Nếu D là một điểm tùy ý trên cạnh NP. Chứng minh rằng góc IMJ có số đo không đổi và tìm vị trí điểm D trên cạnh NP để IJ có độ dài nhỏ nhất.
giúp mk vs !!!
Cho tam giác ABC cân tại A Gọi O là điểm cách đều ba đỉnh A, B, C. Nối OA, OB, OC.
a) Chứng minh O B A ^ = O A C ^ .
b) Trên cạnh AB lấy điểm M, trên cạnh AC lấy điểm N sao cho BM = AN. Chứng minh O thuộc đường trung trực của MN.