VH

Cho tam giác đều ABC. Lấy các điểm D; E; F theo thứ tự thuộc các cạnh AB; BC; CA sao cho AD = BE = CF. Chứng minh rằng tam giác DEF là tam giác đều.

H24
13 tháng 1 2018 lúc 20:51

Hình tự vẽ

Xét 3 tam giác \(ADF,BED,CFE\),ta có:

\(AD=BE=CF\)(gt )

\(\widehat{A}=\widehat{B}=\widehat{C}\)(gt)

DB=EC=AD ( do các cạnh của tam giác đều ABC - các cạnh AD,BE,FC = nhau )

=>3 tam giác \(ADF,BED,CFE\)=nhau

=> DE=DF=FE

=> tam giác DEF đều

P/s tham khảo nha

Bình luận (0)
ST
13 tháng 1 2018 lúc 20:53

A B C D E F

Ta có: AB=BC=CA (t/g ABC đều)

AD=BE=CF

=>BD=CE=AF

Xét t/g ADF và t/g BED có:

AD=BE (gt)

góc A=góc B = 60 độ (gt)

AF=BD (cmt)

=>t/g ADF = t/g BED (c.g.c)

=>DF = DE (1)

Xét t/g ADF và t/g CFE có:

AD = CF (gt)

góc A=góc C = 60 độ (gt)

AF = CE (cmt)

=>t/g ADF = t/g CFE (c.g.c)

=> DF = EF (2)

Từ (1) và (2) => DF = DE = EF => t/g DEF đều 

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
HT
Xem chi tiết
PB
Xem chi tiết
C2
Xem chi tiết
NB
Xem chi tiết
PQ
Xem chi tiết
LH
Xem chi tiết
PB
Xem chi tiết
NH
Xem chi tiết