cho tam giác DEF, hai tia phân giác của góc E và góc F cắt nhau tại I. qua I vẽ đường song song với DE cắt DF và EF lần lượt tại M và N. so sánh DM+EN với MN
Cho tam giác đều DEF. Tia phân giác của góc E cắt cạnh DF tại M. Qua D kẻ đường thẳng vuông góc với DE, đường thẳng này cắt tia EM tại N và cắt tia EF tại P. Chứng minh rằng
a/ Tam giác DNF cân
b/ NF vuông góc với EF
c/ Tam giác DEP cân
Cho tam giác ABC vuông tại A. Tia phân giác góc A cắt BC tại D. Trên các cạnh AB và AC lần lượt lấy các điểm E và F sao cho góc DEF bằng 90 độ. So sánh DE và DF.
Cho tam giác ABC vuông tại A. Tia phân giác góc A cắt BC tại D. Trên các cạnh AB và AC lần lượt lấy các điểm E và F sao cho góc DEF bằng 90 độ. So sánh DE và DF.
cho tam giác DEF ( DE=DF) . Gọi M và N lần lượt là trung điểm của DE và DF.
a) Chúng minh EM=FN và góc DEM =góc DFN
b) EM cắt FN tại K .C/M KE = KF
C) C/m DK là tia phân giác của góc EDF và DK đi qua trung điểm H của EF
Cho tam giác DEF có DE=6cm; DF= 8cm và EF=10cm. Vẽ tia phân giác góc E cắt cạnh DF tại M.Trên cạnh EF lấy điểm N sao cho:EN=ED.Đường thẳng MN cắt đường thẳng DE tại I.
a,C/m: tam giác DEF là tam giác vuông.
b,C/m: MN vuông góc vs EF.So sánh DM và MF
c,Gọi P.Q lần lượt là trung điểm của DN và IF.C/m:P,M,Q thẳng hàng.
Giúp tớ gấp nha1!
Cho tam giác DEF có DE=6cm; DF= 8cm và EF=10cm. Vẽ tia phân giác góc E cắt cạnh DF tại M.Trên cạnh EF lấy điểm N sao cho:EN=ED.Đường thẳng MN cắt đường thẳng DE tại I.
a,C/m: tam giác DEF là tam giác vuông.
b,C/m: MN vuông góc vs EF.So sánh DM và MF
c,Gọi P.Q lần lượt là trung điểm của DN và IF.C/m:P,M,Q thẳng hàng.
Giúp tớ gấp nha1!
Cho tam giác DEF có DE=6cm, DF=8cm, EF=10cm. Vẽ tia phân giác của góc E cắt cạnh DF tại M. Trên cạnh EF lấy điểm N sao cho EN=ED. Đường thẳng NM cắt đường thẳng DE tại I.
a) Chứng minh tam giác DEF là tam giác vuông
b) MN vuông góc EF rồi so sánh DM và MF
c) Gọi P, Q lần lượt là trung điểm của DN và IF. Chứng minh 3 điểm P, M, Q thẳng hàng
Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân