NS

Cho tam giác DEF cân tại D (góc D<90 độ ).kẻ EM vuông góc với AC (M thuộc AC ),kẻ FN vuông góc với AB ( N thuộc AB) ,EM và FNcat81 nhau tại H.Chứng minh rằng : 

a) tam giác EMF =tam giác FNE 

b) DH là đường trung trực của EF

NP
8 tháng 5 2021 lúc 22:30

a)xét ΔEMF và ΔFNE có:

\(\widehat{EMF}\)=\(\widehat{FNE}\)=\(90^o\)

EF là cạnh chung

\(\widehat{MFE}\)=\(\widehat{NEF}\)(ΔDEF cân tại D)

\(\Rightarrow\)ΔEMF=ΔFNE(cạnh huyền góc nhọn)

vì ΔDEF cân tại D \(\Rightarrow\)DE=DF

mà EN=FM 

\(\Rightarrow\)DE-EN=DF-FM

hay DN=DM

b)xét ΔDHN và ΔDHM có:

\(\widehat{DNH}\)=\(\widehat{DMH}\)=\(90^o\)

DN=DM(ch/m trên)

DH là cạnh chung

\(\Rightarrow\)ΔDHN=ΔDHM(cạnh huyền cạnh góc vuông)

\(\Rightarrow\)\(\widehat{MDH}\)=\(\widehat{NDH}\)(2 góc tương ứng)

kéo dài DH cắt EF tại O ta được:

xét ΔDOF và ΔDOE có:

DE=DF(ΔDEF cân tại D)

\(\widehat{FDO}\)=\(\widehat{EDO}\)(ch/m trên)

\(\widehat{DEO}\)=\(\widehat{DFO}\)(ΔDEF cân tại D)

\(\Rightarrow\)ΔDOF=ΔDOE(g-c-g)

\(\Rightarrow\widehat{DOE}=\widehat{DOF}\)(2 góc tương ứng)(1)

OE=OF(2 cạnh tương ứng)(2)

Mà \(\widehat{DOE}+\widehat{DOF}=180^o\)(2 góc kề bù)(3)

Từ (1)và(3)\(\Rightarrow\)\(\widehat{DOE}=\widehat{DOF}=\dfrac{180^o}{2}=90^o\)(4)

Từ (2)và(4)\(\Rightarrow\)DH là trung trực của EF(đ.p.cm)

 

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
TD
Xem chi tiết
LL
Xem chi tiết
TL
Xem chi tiết
CH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
KD
Xem chi tiết