Cho tam giác ABC.Gọi I là điểm đối xứng của trọng tâm G qua B.
a, Chứng minh \(\overrightarrow{IA}-5\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\)
b, Đặt \(\overrightarrow{AG}=\overrightarrow{a},\overrightarrow{AI}=\overrightarrow{b}\) .Tính \(\overrightarrow{AB};\overrightarrow{AC}\) theo \(\overrightarrow{a},\overrightarrow{b}\)
Cho tam giác ABC điểm E thuộc cạnh AB sao cho \(AE=\dfrac{1}{2}BE\), điểm F thuộc cạnh AC sao cho AF=2FC . G là trọng tâm tam giác ABC
a) Tính \(\overrightarrow{AG}\) theo \(\overrightarrow{AE,}\overrightarrow{AF}\) . AG cắt EF tại I. Xác định tỉ số \(\dfrac{AI}{AG}\)
b) Gọi P là trung điểm của EF. Tính \(\overrightarrow{AP}\) theo \(\overrightarrow{AB},\overrightarrow{AC}\) . AP cắt BC tại K. Xác định K và tính \(\dfrac{AP}{AK}\)
Câu 1: Cho hình vuông ABCD có cạnh bằng 1. Gọi O là giao điểm 2 đường chéo AC, BD. Tìm khẳng định sai:
A. \(\overrightarrow{AB}.\overrightarrow{BC}=0\)
B.\(\overrightarrow{BC}.\overrightarrow{BD}=1\)
C.\(\overrightarrow{OD}.\overrightarrow{OB}=-\frac{1}{2}\)
D. \(\overrightarrow{AB}.\overrightarrow{AC}=\sqrt{2}\)
Câu 2: Cho tam giác ABC có M là trung điểm BC, N là trung điểm của BM. Đẳng thức nào sau đây đúng?
A. \(4\overrightarrow{AN}=3\overrightarrow{AB}+\overrightarrow{AC}
\)
B, \(2\overrightarrow{AN}=3\overrightarrow{AB}+\overrightarrow{AC}\)
C.\(4\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{3AC}\)
D.\(4\overrightarrow{AN}=3\overrightarrow{AB}+2\overrightarrow{AC}\)
cho tam giác ABC có trọng tâm G. Gội H là điểm đối xứng của B qua G
a, chứng minh \(\overrightarrow{AH}=\frac{2}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\) và \(\overrightarrow{CH}=-\frac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
b, gọi M là trung điểm của BC. CHứng minh \(\overrightarrow{MH}=\frac{1}{6}\overrightarrow{AC}-\frac{5}{6}\overrightarrow{AB}\)
Tam giác ABC, trọng tâm G. M, N là trung điểm AB, BC. I, J sao cho \(2\overrightarrow{IA}+3\overrightarrow{IC}=\overrightarrow{0}\) và \(\overrightarrow{JA}+5\overrightarrow{JB}+3\overrightarrow{JC}=\overrightarrow{0}\)
a) M, N, J thẳng hàng
b) J là trung điểm BI
Cho \(\Delta ABC\) điểm M thỏa mãn : \(\overrightarrow{MB}=-\overrightarrow{2MC}\)
a, G là trọng tâm tam giác ABC , H đối xứng với B qua G
CM: \(\overrightarrow{AH}=\frac{2}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\)
\(\overrightarrow{CH}=\frac{-1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
b. N là trung điểm của BC . CM \(\overrightarrow{NH}=\frac{1}{6}\overrightarrow{AC}-\frac{5}{6}\overrightarrow{AB}\)
Cho hình bình hành ABCD. Gọi M, N là các điểm thuộc AB, CD sao cho \(AM=\frac{1}{3}AB\), \(CN=\frac{1}{2}CD\). Gọi G là trọng tâm của tam giác BMN. Phân tích vectơ \(\overrightarrow{AG}\) theo \(\overrightarrow{AB}=\overrightarrow{a},\overrightarrow{AC}=\overrightarrow{b}\).
Cho tam giác ABC có G là trọng tâm. Lấy I,Jsao cho:\(2\overrightarrow{IA}+3\overrightarrow{IC}=\overrightarrow{0},2\overrightarrow{JA}+5\overrightarrow{JB}+3\overrightarrow{JC}=\overrightarrow{0}\)
a) M,N là trung diêm AB,BC. CM: M,N,J thẳng hàng
Cho tam giác ABC có G là trọng tâm, I là trug điểm AB, M thuộc cạnh AB sao cho \(\overrightarrow{MA}+3\overrightarrow{MB}=0\).
a, CMR; \(\overrightarrow{MC}+2\overrightarrow{MI}=3\overrightarrow{MG}\)
b, Giả sử điểm N t/m: \(\overrightarrow{AN}=x\overrightarrow{AC}\). Tìm x để M,N,G thẳng hàng