CN

CHo tam giác ABC vuông tại A.Kẻ AH vuông góc với BC, kẻ HP vuông góc với AB và kéo dài để PE=PH.Kẻ HQ vuông góc với AC và kéo dìa để QF=QH. CHứng minh 

a) Tam giác APE= tam giác APH, tam giác AQH= tam giác AQF

b) chứng minh E,A,F thẳng hàng và A là trung điểm của EF

a) Vì HP\(\perp\)AB 

=> HPA = 90° 

Mà PH = PE

=> PA là trung trực của EH 

=> ∆EAH cân tại A 

=> AE = AH 

=> AEH = AHE 

Xét ∆ vuông AEP và ∆ vuông AHP ta có

AE = AH 

AP chung 

=> ∆AEP = ∆AHP (ch-cgv)

Vì HQ\(\perp\)AC 

=> HQA = 90° 

Mà HQ = QF 

=> AQ là trung trực HF 

=> ∆AHF cân tại A 

=> ∆AHQ = ∆FAQ (ch-cgv)

b) Vì ∆AHF cân tại A 

=> AH = FA 

Mà EA = AH 

=> EA = AH = FA 

=>AH = \(\frac{1}{2}\)FE 

=> ∆EHF cân tại H 

=> A \(\in\)FE 

=> A là trung điểm FE 

=> F,E,A thẳng hàng 

Bình luận (0)

Các câu hỏi tương tự
PN
Xem chi tiết
NK
Xem chi tiết
NH
Xem chi tiết
NM
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
DT
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết