Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông

H24

Cho tam giác ABC vuông tại A,đường cao AH,gọi D,E lần lượt là hình chiếu của H trên AB,AC.Chứng minh rằng √HB.HC=3√BD.CE.BC. 3 là căn nhỏ nha

 

 

 

AT
15 tháng 7 2021 lúc 9:20

ý bạn là chứng minh \(\sqrt{HB.HC}=\sqrt[3]{BD.CE.BC}\)

tam giác ABC vuông tại A có AH là đường cao 

\(\Rightarrow HB.HC=AH^2\Rightarrow\sqrt{HB.HC}=AH\)

Ta có: \(AH^4=\left(AH^2\right)^2=\left(BH.HC\right)^2=BH^2.CH^2\)

tam giác AHB vuông tại H có HD là đường cao \(\Rightarrow BH^2=BD.BA\)

tam giác AHC vuông tại H có HF là đường cao \(\Rightarrow CH^2=CE.CA\)

\(\Rightarrow BH^2.CH^2=BD.BA.CE.CA=BD.CE.\left(AB.AC\right)\)

tam giác ABC vuông tại A có AH là đường cao \(\Rightarrow AH.BC=AB.AC\)

\(\Rightarrow BD.CE.\left(AB.AC\right)=BD.CE.AH.BC\Rightarrow BD.CE.BC.AH=AH^4\)

\(\Rightarrow BD.CE.BC=AH^3\Rightarrow\sqrt[3]{BD.CE.BC}=AH\)

\(\Rightarrow\sqrt{HB.HC}=\sqrt[3]{BD.CE.BC}\)

Bình luận (1)

Các câu hỏi tương tự
NL
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
NP
Xem chi tiết
LN
Xem chi tiết
BN
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết