LT

Cho tam giác ABC vuông tại A,đường cao AH .Biết BC=8cm,BH=2cm a) Tính AB,AC,AH b) Trên cạnh AC lấy điểm K (K khác A,C),gọi D là hình chiếu của A trên BK. Chứng minh rằng :BD.BK=BH.BC c) Chứng minh rằng : diện tích BHD =1/4 diện tích BKC×CoS bình phương góc ABD

NM
22 tháng 9 2021 lúc 10:41

\(a,\) Áp dụng HTL tam giác:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=16\\AC^2=BC\cdot CH=8\left(8-2\right)=48\\AH^2=BH\cdot CH=2\left(8-2\right)=12\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=4\left(cm\right)\\AC=4\sqrt{3}\left(cm\right)\\AH=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)

\(b,\widehat{ADB}=\widehat{AHB}\left(=90^0\right)\Rightarrow ADHB.nội.tiếp\\ \Rightarrow\widehat{DHA}=\widehat{DBA}\left(cùng.chắn.AD\right)\left(1\right)\) \(\left\{{}\begin{matrix}\widehat{CKB}=\widehat{KAB}+\widehat{ABD}\left(góc.ngoài\right)=90^0+\widehat{ABD}\\\widehat{DHB}=\widehat{DHA}+\widehat{AHB}=\widehat{DHA}+90^0\\\widehat{ABD}=\widehat{DHA}\left(cm.trên\right)\end{matrix}\right.\\ \Rightarrow\widehat{CKB}=\widehat{DHB}\\ \left\{{}\begin{matrix}\widehat{CKB}=\widehat{DHB}\\\widehat{CBK}.chung\end{matrix}\right.\Rightarrow\Delta DHB\sim\Delta CKB\left(g.g\right)\\ \Rightarrow\dfrac{BD}{BC}=\dfrac{BH}{BK}\Rightarrow BD\cdot BK=BH\cdot BC\)

 

 

Bình luận (0)

Các câu hỏi tương tự
BT
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
KT
Xem chi tiết
HD
Xem chi tiết
HD
Xem chi tiết
1A
Xem chi tiết