1) Cho tam giác ABC vuông tại A ( AB > AC ) . Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Trên cạnh AB lấy điểm E sao cho AC = AE
a) Chứng minh rằng : tam giác ABC = tam giác ADE
b) Gọi M , N lần lượt là trung điểm của DE và BC. Chứng minh tam giác ADM = tam giác ABN và tam giác AMN vuông cân
c) Qua E kẻ EH vuông góc với BC tại H. Chứng minh rằng 3 điểm D ; E ; H thẳng hàng và CE vuông góc với BD
Cho tam giác ABC vuông tại A (AB>AC). Trên tia đối của tia AC lấy điểm D sao cho AD=AB. Trên cạnh AB lấy điểm E sao cho AC=AE.
a) Chứng minh rằng: tam giác ABC = tam giác ADE.
b) Gọi M,N lần lượt là trung điểm của DE và BC. Chứng minh tam giác ADM=tam giác ABN và AMN vuông cân.
c) Qua E kẻ AH vuông góc với BC tại H. Chứng minh rằng 3 điểm D,E,H thẳng hàng và CE vuông góc với BD
Cho tam giác ABC vuông tại A, kẻ đường phân giác BD (De AC) và kẻ DE vuông góc với BC (E thuộc BC). a) Chứng minh rằng: DA = DE b) Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh ba điểm E, D, F thẳng hàng?
Cho tam giác ABC (AB < AC) , AH vuông góc BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HD = HA, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA.
a) Chứng minh : AB = CE và BD = CE.
b) Gọi F là trung điểm của DE. Chứng minh MF vuông góc với DE.
c) MF có song song với AD không? Vì sao?
Cho tam giác ABC, M là trung điểm của cạnh AC, trên tia đối của tia MB lấy điểm D sao cho MB=MD. Vẽ CE vuông góc AD tại E. Gọi F là điểm trên cạnh BC sao cho BF=DE. Chứng minh rằng:
a/ tam giác ABC = tam giác CDA
b/ AF vuông góc với BC
c/ M, E, F thẳng hàng.
Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:
a) BD là đường trung trực của AE.
b) AD<DC
c) Ba điểm E, D, F thẳng hàng
Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.
a) Tính BC
b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB
c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông
d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF
Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:
a) Tam giác ANC là tam giác cân
b) NC vuông góc BC
c) Tam giác AEC là tam giác cân
d) So sánh BC và NE
Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:
a) Góc ACE= góc ABD
b) Tam giác ABD = tam giác ECA
c) Tam giác AED là tam giác vuông cân
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC. Rrên tia đối HA lấy điểm M sao cho HA = HM. Gọi D là trung điểm của BC. Trên tia đối của tia DA lấy E sao cho DA = DE.
a, C/m : AB=CE=BM
b, C/m : Tam giác AME là tam giác vuông
c, Kẻ BI vuông góc AE, EK vuông góc BC. Tia BI cắt tia EK tại O. C/m: OB=OE.
d, C/m : OD vuông góc với AC.
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC. Rrên tia đối HA lấy điểm M sao cho HA = HM. Gọi D là trung điểm của BC. Trên tia đối của tia DA lấy E sao cho DA = DE.
a, C/m : AB=CE=BM
b, C/m : Tam giác AME là tam giác vuông
c, Kẻ BI vuông góc AE, EK vuông góc BC. Tia BI cắt tia EK tại O. C/m: OB=OE.
d, C/m : OD vuông góc với AC.
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H, trên tia đối của tia HA lấy điêm D sao cho HD= HA. Trên tia đối của tia CB lấy điểm E sao cho CE=CB. a) Chứng minh: Tam giác ACD cân b) Chứng minh: Tam giác ACE=Tam giác DCE c) Đường thẳng AC cắt DE tại K. Chứng minh: AB+BC> 2DK Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H, trên tia đối của tia HA lấy điêm D sao cho HD= HA. Trên tia đối của tia CB lấy điểm E sao cho CE=CB.
a) Chứng minh: Tam giác ACD cân
b) Chứng minh: Tam giác ACE=Tam giác DCE
c) Đường thẳng AC cắt DE tại K. Chứng minh: AB+BC> 2DK