TH

Cho tam giác ABC vuông tại A với AB = 3cm, BC= 5cm a) tính độ dài đoạn thẳng AC b) trên tia đối của tia AB, lấy điểm D sao cho AB = AD. Chứng minh tam giác ABC= tam giác ADC, từ đó suy ra tam giác BCD cân c) trên AC lấy điểm E sao cho AE=1/3AC. Chứng minh DE đi qua trung điểm I của BC. d) chứng minh DI + 2/3 DC>DB.

OI
1 tháng 4 2021 lúc 17:55

a)Xét tam giác ABC vuông tại A có:

\(BC^2=AB^2+AC^2\) (ĐL Pytago)

\(5^2=3^2+AC^2\)

25=9+\(AC^2\)

25-9=\(AC^2\)

\(AC^2\)=16

Vậy...

b)góc BAC=góc DAC(2 góc này ở vị trì kề bù)

Xét tam giác BAC  và tam giác DAC có:

BC=AD(gt)

góc BAC=góc DAC(cmt =90độ )

AC cạnh chung

\(\Rightarrow\Delta ABC=\Delta ADC\)(2 cgv)

\(\Rightarrow BC=DC\)(..)(1)

và góc B= góc D(...)(2)

Từ (1) và(2)có tam giác BCD cân tại C

 

Bình luận (0)

Các câu hỏi tương tự
PV
Xem chi tiết
ND
Xem chi tiết
SC
Xem chi tiết
H24
Xem chi tiết
DL
Xem chi tiết
DL
Xem chi tiết
TL
Xem chi tiết
NA
Xem chi tiết
TD
Xem chi tiết