NC

Cho tam giác ABC vuông tại A. Vẽ đường cao AH. Trên cạnh BC lấy điểm D sao cho BD = BA a) chứng minh tia AD là tia phân giác của góc HAC b) Vẽ DK vuông góc với AC (k thuộc AC ). Chứng minh AK = AH c) Chứng minh rằng AB + AC < BC + 2AH

 

VN
25 tháng 4 2016 lúc 21:04

a) Ta có: BA = BD (Gt)

=> Tam giác BAD cân tại B

=> góc BAD = góc BDA (đpcm)

b) Ta có: góc HAD + góc HDA = 90(tam giác ADH vuông tại H)

              góc DAC + góc DAB = 900 (tam giác ABC vuông tại A)

Mà góc HDA = góc DAB (cm a)

=> 900 - HDA = 90- DAB

hay góc HAD = góc DAC    (1)

Mà AD nằm giữa AH và AC    (2)

Từ (1) và (2):

=> AD là phân giác của góc HAC (đpcm)

c) Xét tam giác AHD và tam giác AKD có:

                    góc H   =  góc K (=900)

                       AD    =   AD (cạnh chung)

                  góc HAD = góc DAC ( cm b)

    Vậy tam giác AHD = tam giác AKD (ch-gn) (đpcm)

                       => AH = AK (cạnh tương ứng) (đpcm)

d) Đang nghĩ

Bình luận (1)
VN
25 tháng 4 2016 lúc 21:21

d) Xét tam giác DKC có: góc K = 900

=> Cạnh DC lớn nhất

==> KC + AK + BD < DC + BD + AK (vì KC < DC)

==> AC + BD < BC + AK ( do KC + AK = AC; DC + BD = BC)

Mà: AB = BD (Gt)

      AK = AH (cm c)

=> AC + AB < BC + AH 

Mà BC + AH < BC + 2AH

==> AB + AC < BC + 2AH (đpcm)

Bình luận (0)

Các câu hỏi tương tự
NB
Xem chi tiết
ND
Xem chi tiết
HB
Xem chi tiết
PN
Xem chi tiết
H24
Xem chi tiết
VH
Xem chi tiết
NB
Xem chi tiết
MT
Xem chi tiết
PL
Xem chi tiết