a) Vì BA = BD => tam giác BAD cân tại B => góc BDA = góc DAB
b) Trong tam giác vuông ADH có: góc BDA + DAH = 90o
Mà góc CAD + DAB = CAB = 90o
=> góc BDA + DAH = góc CAD + DAB mà góc BDA = góc DAB
=> góc DAH = CAD => AD là phân giác của HAC
c) Xét tam giác vuông AKD và AHD có: Chung cạnh huyền AD; góc DAH = DAK
=> tam giác AKD = AHD ( cạnh huyền - góc nhọn)
=> AK = AH ( 2 cạnh tương ứng)
dCó DC > KC (tam giác KDC vuông, DC là cạnh huyền)
=> DC + BD+ AK > KC + BD + AK
=> BC +AK > AC + BD
=> AB + AC < BC + AH (vì AK=AH, AB = AD)
a) Vì BA = BD => tam giác BAD cân tại B => góc BDA = góc DAB
b) Trong tam giác vuông ADH có: góc BDA + DAH = 90o
Mà góc CAD + DAB = CAB = 90o
=> góc BDA + DAH = góc CAD + DAB mà góc BDA = góc DAB
=> góc DAH = CAD => AD là phân giác của HAC
c) Xét tam giác vuông AKD và AHD có: Chung cạnh huyền AD; góc DAH = DAK
=> tam giác AKD = AHD ( cạnh huyền - góc nhọn)
=> AK = AH ( 2 cạnh tương ứng)
dCó DC > KC (tam giác KDC vuông, DC là cạnh huyền)
=> DC + BD+ AK > KC + BD + AK
=> BC +AK > AC + BD
=> AB + AC < BC + AH (vì AK=AH, AB = AD)
a) Vì BA = BD => tam giác BAD cân tại B => góc BDA = góc DAB
b) Trong tam giác vuông ADH có: góc BDA + DAH = 90o
Mà góc CAD + DAB = CAB = 90o
=> góc BDA + DAH = góc CAD + DAB mà góc BDA = góc DAB
=> góc DAH = CAD => AD là phân giác của HAC
c) Xét tam giác vuông AKD và AHD có: Chung cạnh huyền AD; góc DAH = DAK
=> tam giác AKD = AHD ( cạnh huyền - góc nhọn)
=> AK = AH ( 2 cạnh tương ứng)
dCó DC > KC (tam giác KDC vuông, DC là cạnh huyền)
=> DC + BD+ AK > KC + BD + AK
=> BC +AK > AC + BD
=> AB + AC < BC + AH (vì AK=AH, AB = AD)
a) Ta có : BA = BD
=> tam giác BAD cân tại B
=> góc BDA = góc DAB
b) Trong tam giác vuông ADH có: góc BDA + DAH = 90o
Mà góc CAD + DAB = CAB = 90o
=> góc BDA + DAH = góc CAD + DAB mà góc BDA = góc DAB
=> góc DAH = CAD => AD là phân giác của HAC
c) Xét tam giác vuông AKD và AHD có: Chung cạnh huyền AD; góc DAH = DAK
=> tam giác AKD = AHD ( cạnh huyền - góc nhọn)
=> AK = AH ( 2 cạnh tương ứng)
dCó DC > KC (tam giác KDC vuông, DC là cạnh huyền)
=> DC + BD+ AK > KC + BD + AK
=> BC +AK > AC + BD
=> AB + AC < BC + AH (vì AK=AH, AB = AD)
a) Ta có : BA = BD
=> tam giác BAD cân tại B
=> góc BDA = góc DAB
b) Trong tam giác vuông ADH có: góc BDA + DAH = 90o
Mà góc CAD + DAB = CAB = 90o
=> góc BDA + DAH = góc CAD + DAB mà góc BDA = góc DAB
=> góc DAH = CAD => AD là phân giác của HAC
c) Xét tam giác vuông AKD và AHD có: Chung cạnh huyền AD; góc DAH = DAK
=> tam giác AKD = AHD ( cạnh huyền - góc nhọn)
=> AK = AH ( 2 cạnh tương ứng)
dCó DC > KC (tam giác KDC vuông, DC là cạnh huyền)
=> DC + BD+ AK > KC + BD + AK
=> BC +AK > AC + BD
=> AB + AC < BC + AH (vì AK=AH, AB = AD)
a) Vì BA = BD => tam giác BAD cân tại B => góc BDA = góc DAB
b) Trong tam giác vuông ADH có: góc BDA + DAH = 90o
Mà góc CAD + DAB = CAB = 90o
=> góc BDA + DAH = góc CAD + DAB mà góc BDA = góc DAB
=> góc DAH = CAD => AD là phân giác của HAC
c) Xét tam giác vuông AKD và AHD có: Chung cạnh huyền AD; góc DAH = DAK
=> tam giác AKD = AHD ( cạnh huyền - góc nhọn)
=> AK = AH ( 2 cạnh tương ứng)
dCó DC > KC (tam giác KDC vuông, DC là cạnh huyền)
=> DC + BD+ AK > KC + BD + AK
=> BC +AK > AC + BD
=> AB + AC < BC + AH (vì AK=AH, AB = AD)
a) Ta có : BA = BD
=> tam giác BAD cân tại B
=> góc BDA = góc DAB
b) Trong tam giác vuông ADH có: góc BDA + DAH = 90o
Mà góc CAD + DAB = CAB = 90o
=> góc BDA + DAH = góc CAD + DAB mà góc BDA = góc DAB
=> góc DAH = CAD => AD là phân giác của HAC
c) Xét tam giác vuông AKD và AHD có: Chung cạnh huyền AD; góc DAH = DAK
=> tam giác AKD = AHD ( cạnh huyền - góc nhọn)
=> AK = AH ( 2 cạnh tương ứng)
dCó DC > KC (tam giác KDC vuông, DC là cạnh huyền)
=> DC + BD+ AK > KC + BD + AK
=> BC +AK > AC + BD
=> AB + AC < BC + AH (vì AK=AH, AB = AD)