PA

Cho tam giác ABC vuông tai A. Vẽ BM là tia phân giác của góc ABC (M thuộc AC)

a) Cho AB = 6cm, AC = 8cm. Tính độ dài cạnh BC

b) Kẻ MK vuông với BC tại K. Chứng minh tam giác ABM = tam giác KBM. Suy ra tam giác ABK cân.

c) Tia KM cắt tia BA ở D. Chứng minh AK // CD.

Giúp mình với ạ

TT
11 tháng 3 2022 lúc 15:57

a) Xét \(\Delta ABC\) vuông tại A:

\(BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow BC^2=6^2+8^2=36+64=100.\\ \Rightarrow BC=10\left(cm\right).\)

b) Xét \(\Delta ABM\) vuông tại A và \(\Delta KBM\) vuông tại K:

\(BMchung.\)

\(\widehat{ABM}=\widehat{KBM}\) (BM là phân giác góc ABC).

\(\Rightarrow\Delta ABM\) \(=\Delta KBM\left(ch-gn\right).\)

\(\Rightarrow AB=KB.\)

\(\Rightarrow\Delta ABK\) cân tại B.

c) Xét \(\Delta ABK\) cân tại B:

\(\widehat{AKB}=\dfrac{180^o-\widehat{B}}{2}\left(1\right).\)

Xét \(\Delta BDC:\)

DK là đường cao \(\left(DC\perp BC\right).\)

CA là đường cao \(\left(CA\perp AB\right).\)

Mà M là giao điểm của DK và CA.

\(\Rightarrow\) M là trực tâm.

\(\Rightarrow\) BM là đường cao.

Xét \(\Delta DBC:\)

BM là đường cao (cmt).

BM là đường phân giác (gt).

\(\Rightarrow\Delta DBC\) cân tại B.

\(\widehat{DCB}=\dfrac{180^o-\widehat{B}}{2}\left(2\right).\)

Từ (1) (2) \(\Rightarrow\text{​​}\text{​​}\widehat{AKB}=\widehat{DCB}.\)

\(\Rightarrow AK//CD.\)

Bình luận (0)
NQ
10 tháng 4 2022 lúc 20:45

a) Xét ΔABCΔABC vuông tại A:

BC2=AB2+AC2(Pytago).⇒BC2=62+82=36+64=100.⇒BC=10(cm).BC2=AB2+AC2(Pytago).⇒BC2=62+82=36+64=100.⇒BC=10(cm).

b) Xét ΔABMΔABM vuông tại A và ΔKBMΔKBM vuông tại K:

BMchung.BMchung.

ˆABM=ˆKBMABM^=KBM^ (BM là phân giác góc ABC).

⇒ΔABM⇒ΔABM =ΔKBM(ch−gn).=ΔKBM(ch−gn).

⇒AB=KB.⇒AB=KB.

⇒ΔABK⇒ΔABK cân tại B.

c) Xét ΔABKΔABK cân tại B:

ˆAKB=180o−ˆB2(1).AKB^=180o−B^2(1).

Xét ΔBDC:ΔBDC:

DK là đường cao (DC⊥BC).(DC⊥BC).

CA là đường cao (CA⊥AB).(CA⊥AB).

Mà M là giao điểm của DK và CA.

⇒⇒ M là trực tâm.

⇒⇒ BM là đường cao.

Xét ΔDBC:ΔDBC:

BM là đường cao (cmt).

BM là đường phân giác (gt).

⇒ΔDBC⇒ΔDBC cân tại B.

ˆDCB=180o−ˆB2(2).DCB^=180o−B^2(2).

Từ (1) (2) ⇒ˆAKB=ˆDCB.⇒​​​​AKB^=DCB^.

⇒AK//CD.

Bình luận (0)

Các câu hỏi tương tự
PH
Xem chi tiết
NT
Xem chi tiết
GT
Xem chi tiết
NP
Xem chi tiết
TL
Xem chi tiết
LA
Xem chi tiết
NB
Xem chi tiết
PN
Xem chi tiết
TV
Xem chi tiết