AC

 Cho tam giác  ABC vuông tại A, trung tuyến AM. Gọi I là trung điểm của AB, N là điểm đối xứng với M qua I.
    a) C/m tứ giác ANMC là hình bình hành
   b) c/m tứ giác AMBN là hình thoi
   c) Cho AB 4cm; AC = 6cm. Tính diện tích tứ giác AMBN
   d) Tam giác vuông ABC có điều kiện gì thì tứ giác AMBN là hình vuông ?

TT
26 tháng 1 2022 lúc 16:45

a) AM là trung tuyến (gt). => M là trung điểm của BC.

=> BM = MC =  \(\dfrac{1}{2}\) BC.

Xét tứ giác AMBN:

I là trung điểm của AB (gt).

I là trung điểm của NM (N là điểm đối xứng với M qua I).

=> Tứ giác AMBN là hình bình hành (dhnb). 

=> AN = BM và AN // BM (Tính chất hình bình hành).

Mà BM = MC (cmt).

=> AN = MC.

Xét tứ giác ANMC:

AN = MC (cmt).

AN // MC (AN // BM).

=> Tứ giác ANMC là hình bình hành (dhnb).

b) Xét tam giác ABC vuông tại A: 

AM là trung tuyến (gt).

=> AM = \(\dfrac{1}{2}\) BC (Tính chất đường trung tuyến trong tam giác vuông).

Mà BM = MC = \(\dfrac{1}{2}\) BC (cmt).

=> AM = BM = MC = \(\dfrac{1}{2}\) BC.

Xét hình bình hành AMBN: AM = BM (cmt).

=> Tứ giác AMBN là hình thoi (dhnb).

c) Tứ giác ANMC là hình bình hành (cmt).

=> NM = AC (Tính chất hình bình hành).

Mà AC = 6 cm (gt).

=> NM = AC = 6 cm.

\(S_{AMBN}=\dfrac{1}{2}.AB.NM=\dfrac{1}{2}.4.6=12\left(cm^2\right).\)

d) Tứ giác AMBN là hình vuông (gt).

=> \(\widehat{AMB}=90^o\) (Tính chất hình vuông).

=> \(AM\perp BC.\)

Xét tam giác ABC vuông tại A:

AM là trung tuyến (gt).

AM là đường cao \(\left(AM\perp BC\right).\)

=> Tam giác vuông ABC vuông cân tại A.

Bình luận (0)