LT

cho tam giác ABC vuông tại A, tia phân giác góc B cắt cạnh AC tại D trên cạnh BC lấy diemr E sao cho BE = AB. đường thẳng qua C. vuông góc với BD cắt AB tại F. CMR 3 điểm D,E,F thẳng hàng.

TT
12 tháng 1 2022 lúc 15:43

Xét tam giác BAD và tam giác BED có:

+ BA = BE (gt).

\(\widehat{ABD}=\widehat{ABD}\) (BD là phân giác \(\widehat{B}\)).

+ BD chung.

\(\Rightarrow\) Tam giác BDA = Tam giác BDE (c - g - c).

\(\Rightarrow\) \(\widehat{BAD}=\widehat{BED}\) (cặp góc tương ứng).

Mà \(\widehat{BAD}=90^o\) (Tam giác ABC vuông tại A).

\(\Rightarrow\widehat{BED}=\widehat{BAD}\left(=90^o\right).\)

\(\Rightarrow ED\perp BC.\) (1)

Xét tam giác FBC có:

+ AC là đường cao \(\left(BF\perp AC\right).\)

+ BD là đường cao​ \(\left(BD\perp FC\right).\)

​Mà BD cắt AC tại D (gt).

\(\Rightarrow\) D là trực tâm.

\(\Rightarrow\) FD là đường cao. \(\Rightarrow FD\perp BC.\) (2)

Từ (1) và (2) \(\Rightarrow F;D;E\) thẳng hàng (đpcm).

Bình luận (0)