\(AB=2+\sqrt{3}\left(cm\right)\)
\(IB=2+\sqrt{3}-\sqrt{3}=2\left(cm\right)\)
Xét ΔCAB có CI là phân giác
nên CA/AI=CB/IB
hay \(\dfrac{CA}{\sqrt{3}}=\dfrac{CB}{2}\)
Đặt \(\dfrac{CA}{\sqrt{3}}=\dfrac{CB}{2}=k\)
=>\(CA=k\sqrt{3};CB=2k\)
Theo đề, ta có: \(\left(2k\right)^2-\left(k\sqrt{3}\right)^2=\left(2+\sqrt{3}\right)^2\)
\(\Leftrightarrow4k^2-3k^2=7+4\sqrt{3}\)
=>\(k^2=7+4\sqrt{3}\)
hay \(k=2+\sqrt{3}\left(cm\right)\)
=>\(AC=2\sqrt{3}+3\left(cm\right);BC=4+2\sqrt{3}\left(cm\right)\)
=>BC=2AB