Cho tam giác ABC vuông tại A( AB < AC) nội tiếp đường tròn (O) có đường kính BC. Kẻ dây AD vuông góc với BC. Gọi E là giao điểm của DB và CA. Qua E kẻ đường thẳng vuông góc với BC, cắt BC ở H, cắt AB ở F. Chứng minh rằng :
a) Tam giác EBF là tam giác cân
b) Tam giác HAF là tam giác cân
c) HA là tiếp tuyến của đường tròn (O)
Cho đường tròn(O;R) dây AB=r√3 qua O kẻ đường vuông góc với AB tại H cắt tiếp tuyến tại A của đường tròn (O) tại điểm M a/Chứng minh tam giác OMB là tam giác vuông và từ đó suy ra MB là tiếp tuyến b/Vẽ đường kính BC của đường tròn(O).chứng minh AC vuông góc AB c/Tính diện tích tứ giác MAOB theo R
Tam giác ABC nhọn nội tiếp đường tròn (O;R). Gọi D trung điểm BC. Tia OD cắt (O) tại E; AE cắt BC tại J. Tiếp tuyến tại A của (O) cắt BC tại M. DO cắt (O) tại F. BF cắt AE tại I. EF cắt AC tại N. Chứng minh IN//BC.
Cho tam giác ABC vuông tại A ( AB <AC) vẽ đường tròn (O) đường kính AC , đường tròn (O) cắt BC tại D .Vẽ tiếp tuyến BE của (o) ( E là tiếp điểm) .BO cắt AE tại H
a) Chứng Minh : Tứ giác OB vuông AE và BH.BO=BD.BC
Chứng minh DHOC là tứ giác nội tiếp và BHD=OHC
Giup mk ạ =((((
cho tam giác đều nội tiếp đường tròn (o;r). đường thẳng vuông góc với ac tại a cắt (o) tại d, cắt tiếp tuyến của đường tròn (o) tại e . gọi m là trung điểm của ce và f của ac và bd .a) chứng minh :am là tiếp tuyến của đường tròn (o) b) tứ giác amcb là hình gì? vì sao? c) chứng minh: bc//ef e) chứng minh: c,d,e,f cùng thuộc một đường tròn f) tính cf,de theo r
) Từ điểm A ở ngoài (O; R) vẽ hai tiếp tuyến AB và AC đến (O; R), ( với B, C là các tiếp điểm ). Kẻ đường kính BD của (O; R). Tia AO cắt dây BC tại H. a) Chứng minh OA là trung trực của đoạn thẳng BC và OA // CD b) AD cắt (O; R) tại E (E khác D). Chứng minh BED vuông và AC2 = AE . AD c) Chứng minh: 𝑂𝐻𝐷 ̂ = 𝑂𝐷𝐴
Cho hai đường tròn (O; 6cm) và (O' 4cm) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC, B ∈ (O), C ∈ (O'). Tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC ở I.
a) Chứng minh ΔOIO' là tam giác vuông
b) Chứng minh OO' là tiếp tuyến của đường tròn ngoại tiếp ΔABC
c) Tính diện tích tứ giâc OBCO'