NN

Cho tam giác ABC vuông tại A . Kẻ phân giác BH (H thuộc AC) . Kẻ MH vuông góc BC (M thuộc BC ) . Gọi N là giao điểm của AD với MH 
a, Tam giác ABH = tam giác MBH
b, BH vuông góc với AM 
c, AM song song với CN

 

NP
21 tháng 4 2021 lúc 11:43

xét ΔABH và ΔMBH có:

\(\widehat{HMB}\)=\(\widehat{HAB}\)=90o

BH là cạnh chung

\(\widehat{MBH}\)=\(\widehat{ABH}\)(BH la phân giác của \(\widehat{MBA}\))

⇒ΔABH=ΔMBH(cạnh huyền góc nhọn)

⇒BM=AB(2 cạnh tương ứng)

⇒ΔABM cân tại B

\(\widehat{ABM}\)=\(\widehat{MAB}\)

gọi I là giao điểm của AM và BH

xét ΔMBI và ΔABI có

AB=BM(ΔABH=ΔMBH)

\(\widehat{MBH}\)=\(\widehat{ABH}\)(BH là phân giác của \(\widehat{MBA}\))

\(\widehat{ABM}\)=\(\widehat{MAB}\)(chứng minh trên)

⇒ΔMBI=ΔABI (g-c-g)

\(\widehat{MIB}\)=\(\widehat{AIB}\)(2 góc tương ứng)(1)

Mà \(\widehat{MIB}\)+\(\widehat{AIB}\)=180o(2 góc kề bù)(2)

Từ (1) và (2) \(\widehat{MIB}\)=\(\widehat{AIB}\)=\(\dfrac{180^o}{2}\)=90o

⇒BH⊥AM (Điều phải chứng minh)

xét ΔCMH và ΔNAH có:

\(\widehat{CMH}\)=\(\widehat{HAN}\)=90o

\(\widehat{CHM}\)=\(\widehat{NHA}\)(2 góc đối đỉnh)

AH=HM(ΔABH=ΔMBH)

⇒ΔCMH=ΔNAH(g-c-g)

⇒HC=HN(2 cạnh tương ứng)

⇒ΔCHN cân tại H

\(\widehat{NCH}\)=\(\widehat{CNH}\)

vì ΔABH=ΔMBH

⇒AH=HM(2 cạnh tương ứng)

⇒ΔAHM cân tại H

\(\widehat{HMA}\)=\(\widehat{HAM}\)

xét ΔNHC và ΔMHA có

\(\widehat{MHA}\)=\(\widehat{CHN}\)(2 góc đối đỉnh)

\(\widehat{HMA}\)+\(\widehat{HAM}\)=\(\widehat{NCH}\)+\(\widehat{CNH}\)

Mà \(\widehat{HMA}\)=\(\widehat{HAM}\)(chứng minh trên)và\(\widehat{NCH}\)=\(\widehat{CNH}\)(chứng minh trên)

\(\widehat{HMA}\)=\(\widehat{NCH}\)

⇒AM // CN (điều phải chứng minh)

Bình luận (0)

Các câu hỏi tương tự
LC
Xem chi tiết
LP
Xem chi tiết
MS
Xem chi tiết
G6
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
KM
Xem chi tiết