DL

Cho tam giác ABC vuông tại A. Đường phân giác của góc B cắt AC tại H. Kẻ HE vuông góc với BC ( E thuộc BC). Đường thẳng  EH và BA cắt nhau tại I.
a) Chứng minh rằng : tam giác ABH = tam giác EBC
b) Chứng minh BH là trung trực của AE
c) So sánh HA va HC
d)Chứng minh BC vuông góc với IC

H24
29 tháng 5 2022 lúc 16:56

`a)`

Xét △ABH và △EBC có:

BH cạnh chung

\(\widehat{BAH}=\widehat{BEH}\)

\(\widehat{ABH}=\widehat{EBH}\)

`=> △ABH = △EBC`

`b)`

Ta có:

`△ABH = △EBC`

`=> AB = BE`

=> △ABE cân tại B
Xét `△ABE` cân tại B có:

`BH` là đường phân giác

=> `BH` là đường trung trực

`c)`

`Δ ABH = Δ EBC`

=> `AH = HE` (2 cạnh tương ứng) (1)
Xét tam giác HEC vuông tại E
=> `HC > HE` ( vì HC là cạnh huyền)(2)

MÀ `AH = HE`

nên `HA < HC`

`d)` có bị sai đề không vậy bạn

 

 

Bình luận (4)
H24
29 tháng 5 2022 lúc 19:22

Sửa đề

d) chứng minh BH vuông góc với IC 

Bài làm:

Xét `△ABE` cân tại `B` có:

`BH` là đường phân giác

`=> BH` là đường cao

`=> BH⊥ IC`

 

 

 

Bình luận (3)

Các câu hỏi tương tự
LH
Xem chi tiết
H24
Xem chi tiết
CH
Xem chi tiết
TL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PV
Xem chi tiết
PV
Xem chi tiết