ΔABE = Δ HBE
⇒ BA = BH, EA = EH (các cặp cạnh tương ứng)
⇒ E, B cùng thuộc trung trực của AH
nên đường thẳng EB là trung trực của AH.
ΔABE = Δ HBE
⇒ BA = BH, EA = EH (các cặp cạnh tương ứng)
⇒ E, B cùng thuộc trung trực của AH
nên đường thẳng EB là trung trực của AH.
Cho tam giác ABC vuông tại A, đường phân giác BE. Kẻ EH vuông góc với BC (H thuộc BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng:
a) tam giác ABE = tam giác HBE
b) BE là đường trung trực của đoạn thẳng AH
c) EK = EC
d) Chứng minh AE < EC
Bài 6: Cho giác ABC vuông tại A. Đường phân giác BE; kẻ EH vuông góc với đường thẳng BC(H e BC ),Gọi K là giao điểm của AB và HE . Chứng minh : a) triangle ABE= triangle HBE b) AE = EH c) BE là đường trung trực của đoạn thẳng AH d) AH vuông góc BE e) EK = EC 8) AE < EC h) AH // CK
Cho tam giác ABC vuông tại A , đường phân giác BE , Kẻ EH vuông góc với BC ( H thuộc BC ) , gọi K là giao điểm của AB và HE , chứng minh rằng :
a , Tam giác ABE = tam giác HBE
b , BE là đường trung trực của đoạn thẳng AH
c , EK = EC
d , AE < EC
Bài 9. Cho ABC vuông tại A, đường phân giác BE. Kẻ EH vuông góc với BC (H BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng: a) ABE = HBE b) BE là đường trung trực của đoạn thẳng AH c) EK = EC d) Chứng minh AE < EC
Cho tam giác ABC vuông tại A , đường phân giác BE , Kẻ EH vuông góc với BC ( H thuộc BC ) , gọi K là giao điểm của AB và HE , chứng minh rằng :
a , Tam giác ABE = tam giác HBE
b, goc HEC= 2 goc ABE
c , BE là đường trung trực của đoạn thẳng AH
d , AE < EC
Bài 1: Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm. M là trung điểm của BC. Qua M kẻ đường thẳng vuông góc với BC cắt đường thẳng AB, AC tại E và D
a) Tính AM ?
b) Tam giác BEC cân
Bài 2: Cho tam giác ABC vuông tại A, phân giác BE, kẻ EH vuông góc với BC ( H ∈ BC). Gọi K là giao điểm của AB và HE. Chứng minh BE là đường trung trực của AH.
Bài 1: Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm. M là trung điểm của BC. Qua M kẻ đường thẳng vuông góc với BC cắt đường thẳng AB, AC tại E và D
a) Tính AM ?
b) Tam giác BEC cân
Bài 2: Cho tam giác ABC vuông tại A, phân giác BE, kẻ EH vuông góc với BC ( H ∈ BC). Gọi K là giao điểm của AB và HE. Chứng minh BE là đường trung trực của AH.
Bài 1: Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm. M là trung điểm của BC. Qua M kẻ đường thẳng vuông góc với BC cắt đường thẳng AB, AC tại E và D
a) Tính AM ?
b) Tam giác BEC cân
Bài 2: Cho tam giác ABC vuông tại A, phân giác BE, kẻ EH vuông góc với BC ( H ∈ BC). Gọi K là giao điểm của AB và HE. Chứng minh BE là đường trung trực của AH.
Bài 1: Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm. M là trung điểm của BC. Qua M kẻ đường thẳng vuông góc với BC cắt đường thẳng AB, AC tại E và D
a) Tính AM ?
b) Tam giác BEC cân
Bài 2: Cho tam giác ABC vuông tại A, phân giác BE, kẻ EH vuông góc với BC ( H ∈ BC). Gọi K là giao điểm của AB và HE. Chứng minh BE là đường trung trực của AH.