PB

Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (O) đường kính BH và đường tròn tâm O' đường kính CH, hai đường tròn này cắt AB, AC thứ tự tại E và F

a, Tứ giác AEHF là hình gì?

b, Chứng minh EF là tiếp tuyến chung của (O) và (O’)

c, Chứng minh đường tròn đường kính OO' tiếp xúc với EF

d, Cho đường tròn tâm I bán kính r tiếp xúc với EF, (O) và (O’). Tính r theo BH và CH?

CT
24 tháng 8 2019 lúc 7:04

a, HS tự làm

b, HS tự làm

c, Chú ý hình thang vuông OEFO’ và xét đường trung bình của hình thang này

d, Từ I kẻ đường thảng song song với EF cắt OE tại M , cắt O’F tại N

Đặt BH=2R; CH= 2R’

∆IOM vuông tại M có:

I M 2 = I O 2 - O M 2 =  R + r 2 - R - r 2 = 4 R r

Tương tự , ∆ION có  I N 2 = 4 R ' r

Suy ra IM+IN=EF=AH

Vậy  2 R r + 2 R ' r = 2 R R '

=>  r R + R ' = R R '

=> r =  R R ' R + R ' 2

Bình luận (0)