cho tam giác abc vuông tại a đường cao ah từ m là một điểm bất kì trên cạnh bc kẻ md vuông góc với ab, me vuông góc với ac chứng minh 5 điểm a,d,m,h,e cùng nằm trên một đường tròn
- cho tam giác ABC vuông tại A , kẻ AH vuông góc với BC tại H . Trên cạnh BC lấy điểm M ( M khác B, C , H ) . Kẻ ME vuông góc với AB tại E , MF vuông góc với AC tại F
- 1) chứng minh các điểm A,E,F,H cùng nằm trên một đường tròn
- 2) chứng minh BE.CF= ME.MF
Cho tam giác đều ABC cạnh a với đường cao AH. M là 1 điểm bất kì trên cạnh BC. Vẽ ME vuông góc AB, MF vuông góc AC. Gọi O là trung điểm của AM.
a). CM rằng 5 đ A, E, H, M, F cùng nằm trên cùng một đường tròn.
b). Tứ giác OEHF là hình gì.
c). Tìm GTNN của diện tích tứ giác OEHF theo a khi M di động trên cạnh BC.
(Nếu được thì giải chi tiết câu (c) giúp em em cảm ơn ạ)
Cho tam giác ABC vuông tại A , đường cao AH , M là điểm bất kì trên BC , ME vuông góc với AC , MF vuông góc với AB . Chứng minh rằng AH . AM^2 = AE . AF . BC thì M trùng với H hoặc M là trung điểm BC
Cho tam giác ABC \(\left(A=90^0\right)\), đường cao AH. Từ điểm M bất kì trên cạnh BC kẻ \(MD\perp AB\), \(ME\perp AC\). Chứng minh năm điểm A, D, M, H, E cùng nằm trên một đường tròn
Cho tam giác ABC có 3 góc nhọn, nội tiếp đường tròn tâm O và AB < AC. Vẽ đường kính AD của đường tròn tâm O. Kẻ BE và CF vuông góc với AD (E, F thuộc AD). Kẻ AH vuông góc với BC (H thuộc BC).
a) Chứng minh bốn điểm A,B,H,E cùng nằm trên một đường tròn.
b) Chứng minh HE//CD.
c) Gọi M là trung điểm của BC. Chứng minh ME=MF
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH. Gọi D và E lần lượt là chân các đường vuông góc kẻ từ H xuống AB,AC.
a) Cho BH=4cm , CH=9cm. Tính AH,DE.
b) Chứng minh bốn điểm A,D,H,E cùng nằm trên một đường tròn.
c) Đường phân giác của BAH^ cắt BC tại K . Gọi I là trung điểm của AK . Chứng minh CI vuông góc AK.
cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn tâm O và AB < AC . vẽ đường kính AD của đường tròn (O) . kẻ BE và CF vuông góc với AD (E,F thuộc AD) . kẻ AH vuông góc với BC (H thuộc BC).
1) chứng minh bốn điểm A, B, H, E cùng nằm trên một đường tròn.
2) chứng minh HE song song với CD.
3) goi M là trung điểm của BC . chứng minh ME = MF
Cho tam giác ABC nhọn nội tiếp đường tròn (O). Trên cung nhỏ BC lấy điểm D bất kì (D ¹ B, C). Vẽ DM vuông góc với BC tại M . Vẽ DN vuông góc với AC tại N .
a) Chứng minh bốn điểm D, M, N, C cùng thuộc một đường tròn. b) Vẽ DK vuông góc với AB tại K . Chứng minh KD.CD = ND.BD.
c) Trên dây BCvẽ điểm E sao cho CDE= ADB. Tìm vị trí của điểm D trên cung nhỏ BC để
tổng DK + DN nhỏ nhất.