Cho tam giác ABC và đường cao AH . Kẻ HI vuông góc với AB tại I, HK vuông góc với AC tại K
a) Chững minh tam giác ABC và tam giác AHB đồng dạng với nhau; AH^2=AI.AB
b) Chứng minh tam giác AIK đồng dạng với tam giác ACB
c) Đừng phân giác của góc AHB cắt AB tại E. Biết EB/AB=2/5. Chứng minh rằng BI/AI=4/9
mọi người giải giúp mình bài toán\(\frac{3x+5}{x-1}-\frac{2x-2}{2x^2-8x+6}=\frac{x-4}{x-3}\)
Cho tam giác ABC vuông tại A, có đường cao AH. Từ H kẻ HI vuông góc vời AB tại I, HK vuông góc với AC tại K.
a) Chứng minh tứ giác AKHI là hình chữ nhật?
b) Chứng minh tam giác AIK đồng dạng với tam giác ACB suy ra AI.AB=AK.AC
c) Chứng minh góc ABK bằng góc ACI?
d) Gọi O là trung điểm của đoạn IK. Từ Aa vẽ đường thẳng vuông góc với đường thẳng BO tại R. Đường thẳng AR cắt cạnh BC tại S. Chứng minh S là trung điểm của đoạn thẳng HC ?
cho tam giác ABC đường cao BK và CI cắt nhau tại H. Các đường thẳng kẻ từ B vuông góc với AB và kẻ từ C vuông góc với AC cắt nhau tại D :
a) Chứng minh tứ giác BHCD là hình bình hành
b) chứng minh AI.AB=AK.AC
c)cm tam giác AIK và ACB đồng dạng
d)tam giác ABC cần điều kiện j để đường thẳng DH đi qua A? Khi đó tứ giắc BHCD là hình j
cho tam giác ABC vuông tại A, đường cao AH. Từ H vẽ HI vuông góc với AB tại I và HK vuông góc với AC tại K. Gọi AD là trung tuyến của tam giác ABC.
a, CM: tam giác ABC đồng dạng với tam giác HAC
b, CM: tứ giác AIHM là hình chữ nhật
c, CM: AB.AI = AC.AK
d, CM: AD vuông góc với IK
giúp tui vs
cho tam giác ABC vuông tại A, đường cao AH.
a, Cm: tam giác ABC đồng dạng tam giác HBA.
b, gọi I,K lần lượt là hình chiếu của H lên AB,AC. Cm: AI.AB=AK.AC
c, Cho BC= 10cm : Ah=4 cm.tính diện tích tam giác AIK
Cho tam giác ABC vuông tại A có AB = 3 cm AC = 4 cm , đường cao AH a, CM : tam giác ABC đồng dạng tam giác HBA từ đó suy ra ab² = BC . BH b , tính BC và BH c, Kẻ HE vuông góc AB , HF vuông góc AC Chứng minh AH . BH = BE.AC và tính độ dài BE
Cho tám giác ABC vuông tại A, đường cao AH. Kẻ HE,HF lần lượt vuông góc AB,AC.
a) tứ giác AEHF là hình j? Từ đó cm: tam giác AEH đồng dạng tam giác CFH
b) Cm: tám giác AEF đồng dạng tam giác ACB
c) Cho AH=6cm, BC=12,5cm. Tính diện tích tam giác AEF
d) Vẽ I đối xứng H qua AB. Từ B kẻ đường thẳng vuông góc BC cắt AI tại K. Cm: KC,AH,FE đồng qui
Cho tam giác nhọn ABC (AB<AC) có đường cao AH. Tù H kẻ HM vuông góc vớ AB tại M, N vuông góc với AC tại N.
a) CMR ta giác HAB đồng dạng với tam giác MAH
CMR tam giác HAC đồng dạng với tam giác NAH
b) CM AM.AB=AH^2 và AM.AB=AN.AC
c) CM tam giác AMN đồng dạng với tamm giác ACB.
d) Gọi I là giao điểm của AH và MN. CM IA.MH=IM.AN
e) Gọi K là giao điểm của BC. CM AK vuông góc với IN.
Cho tam giác ABC vuông tại A (AB<AC) có đường cao AH, HE vuông góc AC tại E.
a/ Tính AC và diện tích tam giác abc nếu ab =15 cm và bc = 25 cm
b/ AH/HB - HC/AH = 0
c/ Gọi K là điểm đối xứng của B qua A, M là trung điểm của AH, CM cắt KH tại P. CM : Tam giác KHB đồng dạng tam giác CMA. Suy ra CM vuông góc KH tại P
d/ CM: Góc MEP = góc MAP