QN

Cho tam giác ABC vuông tại A đường cao AH gọi E F lần lượt là hình chiếu của h trên AB AC m là đường trung tuyến của tam giác chứng minh AM vuông góc với EF

 

NM
2 tháng 10 2021 lúc 14:37

Gọi O là giao của EF và AH, K là giao AM và EF

Vì \(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\) nên AEHF là hcn

Do đó \(OE=OF=OH=OA\)

\(\Rightarrow\Delta AOF\) cân tại O \(\Rightarrow\widehat{AFO}=\widehat{FAO}\left(1\right)\)

Vì AM là trung tuyến ứng với cạnh huyền BC nên \(AM=BM=CM=\dfrac{1}{2}BC\)

\(\Rightarrow\Delta AMC\) cân tại M \(\Rightarrow\widehat{MCA}=\widehat{MAC}\left(2\right)\)

Vì tam giác AHC vuông tại H nên \(\widehat{MCA}+\widehat{FAO}=90^0\left(3\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\widehat{MAC}+\widehat{AFO}=90^0\)

Mà \(\widehat{AFO}+\widehat{MAC}+\widehat{AKF}=180^0\Rightarrow\widehat{AKF}=90^0\)

Vậy AM vuông góc EF

Bình luận (0)

Các câu hỏi tương tự
LU
Xem chi tiết
PG
Xem chi tiết
MM
Xem chi tiết
LA
Xem chi tiết
KV
Xem chi tiết
H24
Xem chi tiết
MI
Xem chi tiết
NH
Xem chi tiết
HN
Xem chi tiết