Ôn thi vào 10

VN

Cho tam giác ABC vuông tại A , Đường cao AH .Biết BC = 8cm , BH = 2cm 

a, Tính AB , AC, AH

b, Trên AC lấy K ( K khác A và C ) D là hình chiếu của A trên BK . Cm BD.BK = BH.BC

c, CM: S BHD = \(\dfrac{1}{4}\) . S BKC .Cos\(^2\) ABD∠

NT
1 tháng 10 2021 lúc 21:20

b: Xét ΔABK vuông tại A có AD là đường cao ứng với cạnh huyền BK

nên \(BD\cdot BK=AB^2\left(1\right)\)

Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(BH\cdot BC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BD\cdot BK=BH\cdot BC\)

Bình luận (0)
NM
1 tháng 10 2021 lúc 21:27

Câu a,b bạn tk ở đây, mình làm r

https://hoc24.vn/cau-hoi/cho-tam-giac-abc-vuong-tai-aduong-cao-ah-biet-bc8cmbh2cma-tinh-abacahb-tren-canh-ac-lay-diem-k-k-khac-acgoi-d-la-hinh-chieu-cua-a-tren.1961568340497

\(c,\) Áp dụng công thức tính diện tích hình tam giác bằng nửa tích hai cạnh nhân sin góc xen giữa

\(S_{BHD}=\dfrac{1}{2}BH\cdot BD\cdot\sin\widehat{DBH}\\ S_{BKC}=\dfrac{1}{2}BK\cdot BC\cdot\sin\widehat{KBC}\)Mà \(\widehat{DBH}\equiv\widehat{KBC}\)\(\Rightarrow\dfrac{S_{BHD}}{S_{BKC}}=\dfrac{BH\cdot BD}{BK\cdot BC}=\dfrac{2BD}{8BK}=\dfrac{BD}{4BK}=\dfrac{BD^2}{4BK\cdot BD}\\ =\dfrac{1}{4}\dfrac{BD^2}{AB^2}\left(hệ.thức.lượng\right)=\dfrac{1}{4}\cdot\cos^2\widehat{ABD}\\ \Rightarrow S_{BHD}=\dfrac{1}{4}S_{BKC}\cdot\cos^2\widehat{ABD}\)
Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
PC
Xem chi tiết
LK
Xem chi tiết
CM
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
KH
Xem chi tiết