Ôn thi vào 10

H24

(ko cần vẽ hình)

Cho tam giác ABC vuông tại A có góc B = 60 độ, đường cao AH.

a) Biết BC = 6cm, hãy tính độ dài các đoạn AB, AC, CH?

b) Trên tia đối của tia BA lấy điểm D sao cho DB=BC, từ A kẻ đường thẳng vuông góc với CD tại K. Chứng minh: \(\dfrac{1}{KD.DC}=\dfrac{1}{AC^2}+\dfrac{1}{AD^2}\)

c) Chứng minh: \(\tan D=\dfrac{DB}{DC}\)

NT
19 tháng 11 2023 lúc 22:16

a: Xét ΔABC vuông tại A có \(cosB=\dfrac{BA}{BC}\)

=>\(\dfrac{BA}{6}=cos60=\dfrac{1}{2}\)

=>BA=3(cm)

ΔACB vuông tại A

=>\(BA^2+AC^2=BC^2\)

=>\(AC^2+3^2=6^2\)

=>\(AC^2=27\)

=>\(AC=3\sqrt{3}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(CH\cdot CB=CA^2\)

=>\(CH\cdot6=27\)

=>CH=4,5(cm)

b: Sửa đề: \(\dfrac{1}{KD\cdot KC}=\dfrac{1}{AD^2}+\dfrac{1}{AC^2}\)

Xét ΔACD vuông tại A có AK là đường cao

nên \(AK^2=KD\cdot KC\)

Xét ΔACD vuông tại A có AK là đường cao

nên \(\dfrac{1}{AK^2}=\dfrac{1}{AD^2}+\dfrac{1}{AC^2}\)

=>\(\dfrac{1}{KD\cdot KC}=\dfrac{1}{AD^2}+\dfrac{1}{AC^2}\)

c: \(\widehat{ABC}+\widehat{CBD}=180^0\)(hai góc kề bù)

=>\(\widehat{CBD}+60^0=180^0\)

=>\(\widehat{CBD}=120^0\)

ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ACB}=90^0-60^0=30^0\)

Xét ΔDBC có BD=BC

nên ΔBDC cân tại B

=>\(\widehat{BDC}=\widehat{BCD}=\dfrac{180^0-\widehat{DBC}}{2}=30^0\)

Xét ΔACB vuông tại A và ΔADC vuông tại A có

\(\widehat{ACB}=\widehat{ADC}\)

Do đó:ΔACB đồng dạng với ΔADC

=>\(\dfrac{BC}{CD}=\dfrac{AC}{AD}\)

=>\(\dfrac{BC}{AC}=\dfrac{CD}{AD}\)

mà BC=BD

nên \(\dfrac{BD}{AC}=\dfrac{CD}{AD}\)

=>\(\dfrac{BD}{CD}=\dfrac{AC}{AD}=tanD\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
HM
Xem chi tiết
PC
Xem chi tiết
H24
Xem chi tiết
VN
Xem chi tiết
H24
Xem chi tiết
LK
Xem chi tiết
LT
Xem chi tiết
VN
Xem chi tiết