NN

Cho tam giác ABC vuông tại A, có góc B = 600

a) Tìm số đo góc C

b) Tia phân giác của góc B cắt cạnh AC tại D. Kẻ DE vuông góc với BC tại E. Chứng minh: ΔABD = ΔEBD 

HL
22 tháng 11 2021 lúc 21:49

a) Xét △ABD và △EBD có:

ˆBAD=ˆBED=90oBAD^=BED^=90o

BD: cạnh chung

ˆABD=ˆEBDABD^=EBD^

⇒△ABD = △EBD (cạnh huyền - góc nhọn)⇒△ABD = △EBD (cạnh huyền - góc nhọn)

b) △ABD = △EBD

⇒BA=BE⇒BA=BE (2 cạnh tương ứng)

Xét △ABE có: ˆB=60oB^=60o; BA = BE

⇒⇒ △ABE đều

c) Xét △ABC vuông tại A có: ˆABC+ˆC=90oABC^+C^=90o(định lí tổng 3 góc của 1 tam giác vuông)

⇒60o+ˆC=90o⇒ˆC=30o⇒60o+C^=90o⇒C^=30o

Xét △ABC vuông tại A có: ˆC=30oC^=30o

⇒AB=12BC⇒AB=12BC

⇒BC=5.2=10(cm)

Bình luận (0)

Các câu hỏi tương tự
NY
Xem chi tiết
H24
Xem chi tiết
MT
Xem chi tiết
H24
Xem chi tiết
YT
Xem chi tiết
DQ
Xem chi tiết
MS
Xem chi tiết
Z2
Xem chi tiết
H24
Xem chi tiết