H24

Cho tam giác ABC vuông tại A có đường cao AH biết BH=4,CH-6. Gọi M, N lần lượt là hình chiếu của H trên AB, AC a) Chứng minh tứ giác AMHN là hình chữ nhật. b) Tính S tam giác ABC

SG
21 tháng 4 2023 lúc 16:58

loading...

a, ΔABC vuông tại A \(\Rightarrow \angle BAC=90^o\)

M, N lần lượt là hình chiếu của H lên AB, AC \(\Rightarrow \angle HMA= \angle HNA =90^o \)

Tứ giác AMHN có: \(\angle BAC=\angle HMA=\angle HNA=90^o\)

Suy ra AMHN là hình chữ nhật.

b, Có: ΔAHB ∼ ΔCAB (g.g) \(\Rightarrow AB^2=BH.BC=4.(4+6)=40 \Rightarrow AB=2\sqrt{10}\)(cm)

Có: ΔAHC ∼ ΔBAC (g.g) \(\Rightarrow AC^2=CH.CB=6.(6+4)=60 \Rightarrow AC=2\sqrt{15}(cm)\)

SΔABC=\(\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.2.\sqrt{10}.2.\sqrt{15}=10\sqrt{6}\)(cm2)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
H24
Xem chi tiết
OV
Xem chi tiết
HN
Xem chi tiết
JR
Xem chi tiết
NT
Xem chi tiết
DT
Xem chi tiết
DH
Xem chi tiết
AM
Xem chi tiết