Xét tam giác abh và cah ta có góc ahb bằng góc ahc và góc bah bằng góc c (cùng phụ với hac) nên tam giác abh đồng dạng với tam giác cah
Xét tam giác abh và cah ta có góc ahb bằng góc ahc và góc bah bằng góc c (cùng phụ với hac) nên tam giác abh đồng dạng với tam giác cah
Cho tam giác ABC vuông tại A có đường cao AH
a/ Chứng minh tam giác ABH đồng dạng tam giác CBA.
b/ Gọi M là trung điểm của BH. Kẻ CK vuông góc với AM tại K , CK cắt AH tại I. Chứng minh IA = IH
cho tam giác ABC vuông tại A có AB < AC, đường cao AH. Gọi E, F là hình chiêu vuông góc của H lên AB, AC gọi O là trưng điểm của BC
A) chứng minh tam giác ABH đồng dạng với tam giác AHE, từ đó chứng minh AH2 = AE.AB
B) chứng minh tam giác ABC đồng dạng với tam giác AFE
cho tam giác ABC vuông tại A có đường cao AH,đường phân giác BD cắt AH tại M. Cho tam giác ABH đồng dạng với tam giác CBA và tam giác BMH đồng dạng tam giác BDA
a)Cho BC=20cm,AB=12cm.Tính BH
b)Chứng minh MH:MA=DA:DC
Cho ABC vuông tại A, có AB = 6cm, AC = 8 cm, đường cao AH.
a) Chứng minh tam giác HBA đồng dạng với ABC.
b) Tính độ dài BC và AH ?
c) HM và HN là phân giác của tam giác ABH và ACH.
C/minh: tam giác MAN vuông cân.
AI GIÚP MÌNH CÂU NÀY VỚI Ạ, MÌNH CẦN GẮP LẮM
CÂU 1. CHO TAM GIÁC ABC VUÔNG TẠI A, ĐƯỜNG CAO AH, HD LÀ PHÂN GIÁC CỦA GÓC AHC. a) CHỨNG MINH TAM GIÁC ABC ĐỒNG DẠNG VỚI TAM GIÁC HAC
b) CHỨNG MINH AB × DC = AD × AC
CÂU 2. CHO TAM GIÁC ABC CÓ 3 GÓC NHỌN, ĐƯỜNG CAO AH. VẼ HD VUÔNG GÓC VỚI AB TẠI D, HE VUÔNG GÓC VỚI AC TẠI E
a) CHỨNG MINH: TAM GIÁC AHB ĐỒNG DẠNG TAM GIÁC ADH, AH × AH = AD × AB
b) CHỨNG MINH: AD × AB = AE × AC
c) CHỨNG MINH TAM GIÁC ADE ĐỒNG DẠNG VỚI TG ACB
d) ĐƯỜNG PHÂN GIÁC GÓC AHB CẮT AB TẠI M. CM: MB = 2/5 AB VÀ TÍNH BD/DA
1)Cho tam giác ABC vuông tại A có AH là đường cao.D là giao điểm các đường phân giác góc ABH và góc AHB trong tam giác ABH.E là giao điểm đường phân giác góc AHC và góc ACH trong tam giác AHC.
a.Chứng minh tam giác BHD đồng dạng tam giác HAE.
b.Chứng minh tam giác HDE đồng dạng tam giác ABC.
2) Cho tam giác ABC vuông tại A có đường cao AH.
a. Cho AB=6, AC=8.Tính AH ( câu này không trả loi cũng được)
b.Gọi D, E lần lượt trên các cạnh AB,AC sao cho góc DHE=900. xác định vị trí của D và E sao cho DE có độ dài nhỏ nhất.
Cho một tam giác ABC vuông tại A, đường cao AH vẽ HD vuông góc với AB tại E vẽ h f vuông góc với AC tại F
a) Chứng minh tam giác abh và tam giác AHB đồng dạng suy ra AH^2=AE.AB
b) Chứng minh rằng AE.AB = AF.AC
c) Chứng minh rằng tam giác AFE đồng dạng với tam giác ABC
d) Gọi AM là trung tuyến của tam giác ABC. Chứng minh AM vuông góc với EF
cho tam giác ABC vuông tại A ( AB<AC) đường cao AH. Qua B vẽ đường thẳng song song với AC cắt AH tại D. a/ chứng minh tam giác AHC đồng dạng với tam giác DHB. b/ Chứng minh: AB^2=AC*BD.c/ Gọi M, N lần lượt là trung điểm của BD, AC. Chứng minh ba điểm M, H, N thẳng hàng
Cho tam giác ABC vuông tại A có đường cao AH .Kẻ HD vuông góc AC tại D a) Chứng minh: Tam giác ABH đồng dạng tam giác CBA, tam giác DAH đồng dạng tam giác HAC b) Chứng minh AD.AC=BH.HC c) Gọi O là trung điểm AB, OC cắt HD tại I Chứng minh :HI=ID d) Gọi K là giao điểm của AH và OC. Chứng minh B,K,D thẳng hàng