Tam giác ABC vuông tại A, áp dụng hệ thức, ta có:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{18^2}=\frac{1}{324}\) (1)
Đặt \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}=k\Rightarrow AB=3k;AC=4k\)
Thế vào (1) ta được: \(\frac{1}{\left(3k\right)^2}+\frac{1}{\left(4k\right)^2}=\frac{1}{324}\)
\(\Rightarrow\frac{9k^2+16k^2}{9k^2.16k^2}=\frac{1}{324}\)
\(\Rightarrow\frac{15k^2}{144k^4}=\frac{1}{324}\Rightarrow\frac{15}{144k^2}=\frac{1}{324}\Rightarrow144k^2=4860\Rightarrow k^2=33,75\Rightarrow k=\frac{3\sqrt{15}}{2}\)
\(\Rightarrow AB=\frac{3\sqrt{15}}{2}.3=\frac{9\sqrt{15}}{2}\) (cm)
AC = (3 √15)/2 . 4 = 6 √15 (cm)
Tam giác ABC vuông tại A, áp dụng định lý Pitago ta có:
AB2 + AC2 = [(9 √15)/2]^2+(6 √15)^2= 3375/4 = BC2
=> BC = (15 √15)/2
Vậy chu vi của tam giác ABC là: AB+BC+AC= (9 √15)/2 + 6 √15 + (15 √15)/2 = 18 √15 (cm)