a, Xét \(\Delta ABC\)vuông tại A có :
\(BC^2=AB^2+ AC^2\)
\(BC^2=8^2+6^2\)
\(BC^2=64+36\)
\(BC^2=100\)
\(BC=10\)(cm)
b, Xét \(\Delta ABE\)và \(\Delta BDE\)có :
\(AB=AD\)(gt)
\(\widehat{BAE}=\widehat{DAE}=90^o\)(gt)
AE là cạnh chung
=> \(\Delta ABE=\Delta BDE\)(c.g.c)
=> BE = DE
=> \(\widehat{E_1}=\widehat{E_2}\)
Ta có :
\(\widehat{E_1}+\widehat{E_3}=180^o\)(2 góc kề bù)
\(\widehat{E_2}+\widehat{E_4}=180^o\)(2 góc kề bù)
mà \(\widehat{E_1}=\widehat{E_2}\)(cmt)
=> \(\widehat{E_3}=\widehat{E_4}\)
Xét \(\Delta BEC\)và \(\Delta DEC\)có :
\(\widehat{E_3}=\widehat{E_4}\) (chứng minh trên)
EC là cạnh chung
BE = DE (chứng minh trên)
=> \(\Delta BEC\) = \(\Delta DEC\) (c.g.c )
c, Xét \(\Delta CBD\) có :
A là trung điểm của BD
=> CA là đường trung tuyến ứng cạnh BD
mà \(\frac{AE}{AC}=\frac{2}{6}=\frac{1}{3}\)
=> E là trọng tâm của \(\Delta CBD\)
=> DE là đường trung tuyến ứng cạnh BC
=> DE đi qua trung điểm cạnh BC