HN

Cho tam giác ABC vuông tại A có AB = 8cm ; AC = 6cm .

a, Tính BC ;

b, Trên AC lấy điểm E sao cho AE = 2cm , trên tia đối của tia AB lấy điểm D sao cho AD = AB . Chứng minh rằng tam giác BEC = tam giác DEC ;

c, Chứng minh rằng DE đi qua trung điểm cạnh BC

giúp mình với mọi người.

DP
21 tháng 5 2019 lúc 9:35

B A C D 1 3 2 4

a,  Xét \(\Delta ABC\)vuông tại A có : 

\(BC^2=AB^2+ AC^2\) 

\(BC^2=8^2+6^2\)

\(BC^2=64+36\)

\(BC^2=100\)

\(BC=10\)(cm) 

b, Xét \(\Delta ABE\)và \(\Delta BDE\)có : 

 \(AB=AD\)(gt) 

\(\widehat{BAE}=\widehat{DAE}=90^o\)(gt) 

AE là cạnh chung 

=> \(\Delta ABE=\Delta BDE\)(c.g.c) 

=> BE = DE 

=> \(\widehat{E_1}=\widehat{E_2}\)

Ta có : 

\(\widehat{E_1}+\widehat{E_3}=180^o\)(2 góc kề bù) 

\(\widehat{E_2}+\widehat{E_4}=180^o\)(2 góc kề bù) 

mà \(\widehat{E_1}=\widehat{E_2}\)(cmt) 

=> \(\widehat{E_3}=\widehat{E_4}\)

Xét \(\Delta BEC\)và \(\Delta DEC\)có : 

\(\widehat{E_3}=\widehat{E_4}\) (chứng minh trên) 

EC là cạnh chung 

BE = DE  (chứng minh trên) 

=> \(\Delta BEC\) = \(\Delta DEC\) (c.g.c ) 

Bình luận (0)
DP
21 tháng 5 2019 lúc 12:22

c,  Xét \(\Delta CBD\) có : 

A là trung điểm của BD 

=> CA là đường trung tuyến ứng cạnh BD

mà \(\frac{AE}{AC}=\frac{2}{6}=\frac{1}{3}\)

=> E là trọng tâm của \(\Delta CBD\)

=> DE là đường trung tuyến ứng cạnh BC 

=> DE đi qua trung điểm cạnh BC 

Bình luận (0)

Các câu hỏi tương tự
LN
Xem chi tiết
LD
Xem chi tiết
NM
Xem chi tiết
QH
Xem chi tiết
LL
Xem chi tiết
NT
Xem chi tiết
TA
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết