UD

Cho tam giác ABC vuông tại A có AB = 6cm, AC= 8 cm. Kẻ đường cao AH.

a) Chứng minh: tam giác ABC và tam giác HBA đồng dạng

b) Chứng minh AH^2=HB.HC

c) Tính độ dài các cạnh BC, AH

d) Phân giác của góc ABC cắt AH tại E, cắt AB tại D. Tính tỉ số diện tích của hai tam giác ACD và HCE

TT
8 tháng 5 2017 lúc 21:19

Hình thì bạn tự vẽ nha

a)Xét tam giác ABC và tam giá HBA, có:

Góc B chung

Góc BAC = góc BHA 

--> Tam giác ABC ~ Tam giác HBA

b)Xét tam giác AHB và tam giác HCA, có

Góc A - góc H

Góc ABH = Góc AHC

-->tam giác AHB ~ tam giác AHC

-->AH/HB = HC/AH

-->AH.AH = HB.HC

-->AH^2=HB.HC(đpcm)

c)

+) Áp dụng định lý PTG vào tam giác vuông ABC, có :

BC^2=AB^2 + AC^2

<--> 6^2 + 8^2 = 100

--> BC = 10(cm)

+)Vì tam giác ABC ~ Tam giác HBA :

AB/HB = BC/BA = AC/HA

-)AB/HB = BC/BA

= 6/HB =10/6

--> HB = 6.6/10

-->HB = 3,6(cm)

-)BC/BA =AC/HA

=10/6 = 8/HA

--> HA = 6.8/10

--> HA = 4,8 (cm)

d) tính tỉ số diện tích thì bạn ghi tỉ số đồng dạng ra rồi bình phương tỉ số đó lên

là đc tỉ số đồng dạng ạ 

Bình luận (0)
PB
8 tháng 5 2017 lúc 20:54

xét tam giác ABC có BC2=ab2 + ac2

thay số BC2=62+82

BC2=36+64=100

BC=10(cm)

còn lại mình không bít,xin lỗi

Bình luận (0)

Các câu hỏi tương tự
DV
Xem chi tiết
H24
Xem chi tiết
UD
Xem chi tiết
HP
Xem chi tiết
NT
Xem chi tiết
HD
Xem chi tiết
LM
Xem chi tiết
KM
Xem chi tiết
PP
Xem chi tiết