a, Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AC^2=100-36=64\Leftrightarrow AC=8\)cm
* Áp dụng hệ thức :
\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{36}{10}=\frac{18}{5}\)cm
* Áp dụng hệ thức :
\(AH^2=CH.BH\)mà \(BC-BH=CH\Rightarrow CH=10-\frac{18}{5}=\frac{32}{5}\)cm
\(\Rightarrow AH^2=\frac{32}{5}.\frac{18}{5}=\frac{576}{25}\Rightarrow AH=\frac{24}{5}\)cm
Chu vi tam giác ABC là : \(P_{ABC}=AB+AC+BC=6+10+8=24\)cm
Diện tích tam giác ABC là : \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.6.8=24\)cm2
b, Ta có AD là phân giác nên : \(\frac{AB}{BC}=\frac{BD}{CD}\)( t/c )
\(\Rightarrow\frac{CD}{BC}=\frac{BD}{AB}\)( tỉ lệ thức )
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{CD}{BC}=\frac{BD}{AB}=\frac{CD+BD}{AB+BC}=\frac{BC}{16}=\frac{1}{2}\)
\(\Rightarrow\frac{BD}{6}=\frac{1}{2}\Rightarrow BD=3\)cm
\(\Rightarrow HD=BH-BD=\frac{18}{5}-3=\frac{3}{5}\)cm
Áp dụng định lí Pytago cho tam giác ADH vuông tại H ta có :
\(AD^2=HD^2+AH^2=\frac{9}{25}+\frac{576}{25}=\frac{585}{25}\Rightarrow AD=\frac{3\sqrt{65}}{5}\)cm
a) Áp dụng định lý Py-ta-go vào tam giác ABC có :
AB2 + AC2 = BC2
=> AC2 = BC2 - AB2 = 102 - 62 = 64
=> AC = 8
Xét tam giác ABH và tam giác BCA có
\(\hept{\begin{cases}\widehat{ABC}\text{ chung }\\\widehat{BAC}=\widehat{AHB}\left(=90^{\text{o}}\right)\end{cases}}\Rightarrow\Delta ABH\approx\Delta BCA\left(g-g\right)\)
=> \(\frac{AH}{AB}=\frac{BH}{AC}=\frac{AB}{BC}\)
=> \(\frac{AH}{6}=\frac{BH}{8}=\frac{6}{10}\)
=> \(AH=3,6;BH=4,8\)
c, Ta có HM vuông AB => HM là đường cao
Xét tam giác AHB vuông tại H, đường cao HM
\(AH^2=AM.AB\)( hệ thức lượng ) (1)
HN vuông AC => HN là đường cao
Xét tam giác AHC vuông tại H, đường cao HN
\(AH^2=AN.AC\)( hệ thức lượng ) (2)
Từ (1) ; (2) ta có : \(AM.AB=AN.AC\)( đpcm )