NT

cho tam giác ABC vuông tại A có AB =15 cm, AC = 20 cm . Kẻ đường cao AH và trung tuyến AM

a) tính AH, BC 

b)Tính BH , CH

c) tính diện tích tam giác AHM

NT
11 tháng 5 2017 lúc 9:42

bạn tự vẽ hình nka !!!

a) , b) Theo định lí Py - ta - go trong   \(\Delta ABC\)vuông tại A , ta có : 

\(BC^2=AB^2+AC^2=15^2+20^2=625\)\(\Leftrightarrow BC=\sqrt{625}=25\left(cm\right)\)

    Xét \(\Delta AHB\)và   \(\Delta CAB\)có :

\(\widehat{ABC}\)chung     ;        \(\widehat{BHA}=\widehat{BAC}=90\)độ

\(\Leftrightarrow\Delta AHB\infty\Delta CAB\left(g.g\right)\)

Ta có tỉ lệ : \(\frac{AH}{AC}=\frac{BH}{AB}=\frac{AB}{BC}\)

\(\Leftrightarrow AH=\frac{AB\cdot AC}{BC}=\frac{15\cdot20}{25}=12\left(cm\right)\)

\(\Leftrightarrow BH=\frac{AB^2}{BC}=\frac{15^2}{25}=9\left(cm\right)\)

\(\Leftrightarrow CH=BC-BH=25-9=16\left(cm\right)\)

c) ta có :    \(AM=\frac{BC}{2}=\frac{25}{2}=12,5\left(cm\right)\)   ( do AM là đường trung tuyến ứng với cạnh huyền BC )

  Theo định lí Py - ta - go trong   \(\Delta AHM\)vuông tại H , ta có : 

\(HM^2=AM^2-AH^2=12,5^2-12^2=12,25\)\(\Leftrightarrow HM=\sqrt{12,25}=3,5\left(cm\right)\)

\(\Rightarrow S_{AHM}=\frac{1}{2}\cdot AH\cdot HM=\frac{3,5\cdot12}{2}=\frac{42}{2}=21\left(cm^2\right)\)

TK CKO MK NKA !!!

Bình luận (0)

Các câu hỏi tương tự
TD
Xem chi tiết
BT
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
BA
Xem chi tiết
CM
Xem chi tiết
ND
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết