Xét `Delta ABC ` ta có
`AM` là tia phân giác của `hat(BAC)`
`=> (BM)/(CM) = (AB)/(AC)`
`=> CM = (BM*AC)/(AB)`
Mà `AB =12cm,AC=15cm,BM=8cm`
`=> CM=(8*15)/12=10(cm)`
Xét `Delta ABC ` ta có
`AM` là tia phân giác của `hat(BAC)`
`=> (BM)/(CM) = (AB)/(AC)`
`=> CM = (BM*AC)/(AB)`
Mà `AB =12cm,AC=15cm,BM=8cm`
`=> CM=(8*15)/12=10(cm)`
CHo tam giác ABC có ba góc nhọn, AB = 12cm, AC = 15cm, BC = 18 cm đường cao AH ( H thuộc BC ). Vẽ HD vuông góc với AB tại D, HE vuông góc với AC tại E. Vẽ AK là tia phân giác của góc A ( K thuộc BC ). Tính độ dài AK.
Cho tam giác ABC vuông tại A có AB=6cm,BC=10cm.Vẽ tia BM là tia phân giác của góc ABC (điểm M thuộc AC).
a)Tính độ đài của các đoạn AC,MA,MC
b)Từ C kẻ đường thẳng vuông góc với đường thẳng BM tại D.Cm:ΔMAB đồng dạng ΔMDC,rồi suy ra độ dài các cạnh MD,CD
Cho tam giác ABC vuông tại A có AH là đường cao H thuộc BC. Biết AB=15cm, AH=12cm.
a, Chứng minh tg AHB đồng dạng tg CHA
b, Tính BH,HC,AC
c, Vẽ AM là tia phân giác góc BAC, M thuộc BC. Tính HM
d, Lấy E trên AC sao cho HE//AB. Gọi N là trung điểm AB. CN cắt HE tại I. CMR I là trung điểm HE
Cho tam giác ABC vuông tại A có AH là đường cao (H thuộc BC). Cho AB = 15cm, AC = 20cm a, Chứng minh CA^2 = CH.CB b, Kẻ AD là tia phân giác của góc BAC (D thuộc BC). Tính HD c, Trên tia đối của tia AC lấy I bất kì. Kẻ AK vuông góc với BI tại K. Chứng minh tam giác BHK đồng dạng tam giác BIC d, Cho AI = 8cm. Tính S tam giác BHK
cho tam giác ABC vuông tại B đường cao BH, đường phân giác BM kẻ MI vuông góc với BC (I thuộc BC)
b)giả sử AB=15cm, AC=25cm tính độ dài đoạn MC
(không cần hình vẽ)
Bài 1: Cho tam giác ABC vuông tại A (AB < AC), BD là đường phân giác. Vẽ DE ⊥ BC tại E
a) Cho biết AB=9 cm, AC = 12cm, Tính BCb
b) Chứng minh tam giác DAE cân
c) Chứng minh rằng DA < DC
d) Vẽ CF vuông góc với BD tại F. Chứng minh rằng các đường thẳng AB, DE, CF đồng quy
Bài 2:
cho tam giác ABC vuông tại A ( AB<AC ) , BM là đường trung tuyến của tam giác ABC .
Trên tia đối của tia MB lấy điểm D sao cho MD=MB
a) cho biết AC = 8cm , BC = 10cm . Tính AB
b) Chứng minh : AB = CD , AC vuông góc CD
c) Chứng minh : AB + BC > 2BM
d) chứng minh : góc CBM < góc ABM
Bài 1: Cho tam giác ABC vuông tại A (AB < AC), BD là đường phân giác. Vẽ DE ⊥ BC tại E
a) Cho biết AB=9 cm, AC = 12cm, Tính BCb
b) Chứng minh tam giác DAE cân
c) Chứng minh rằng DA < DC
d) Vẽ CF vuông góc với BD tại F. Chứng minh rằng các đường thẳng AB, DE, CF đồng quy
Bài 2:
cho tam giác ABC vuông tại A ( AB<AC ) , BM là đường trung tuyến của tam giác ABC .
Trên tia đối của tia MB lấy điểm D sao cho MD=MB
a) cho biết AC = 8cm , BC = 10cm . Tính AB
b) Chứng minh : AB = CD , AC vuông góc CD
c) Chứng minh : AB + BC > 2BM
d) chứng minh : góc CBM < góc ABM
Câu1
Cho ∆ABC có AM là tia phân giác của góc BAC (M thuộc cạnh BC). Biết AB = 12cm, AC= 18cm, BM = 8cm. Độ dài cạnh MC là: *
12 cm
16 cm
10 cm
20 cm
Câu2
Cho ∆ABC đồng dạng với ∆MNP có AB = 3cm, AC = 5cm, MN = 6cm. Khi đó độ dài cạnh MP bằng: *
10 cm
4 cm
12 cm
3 cm
Tam giác ABC vuông tại A có AB = 6cm, AC = 8cm. Gọi I là giao điểm các đường phân giác của tam giác.
a) Tính độ dài BI
b) Đường vuông góc với BI tại I cắt BC tại M. CMR: BM = MC