BÀI 1 :cho tam giác ABC vuông tại A có AB=4cm BC=6cm. tính tỉ số lượng giác của các góc B và C
BÀI 2 :đơn giản các biểu thức
a)\(A=\cos^2x+\cos^2x.\cot g^2x\)
b)\(sin^2x+\sin^2x.\tan^2x\)
c)\(\dfrac{2cos^2x-1}{\sin x+\cos x}\)
d)\(\dfrac{\cos x}{1+\sin x}+\tan x\)
Cho tam giác ABC vuông tại A. góc C nhỏ hơn 45 độ, trung tuyến AM, đường cao AH. Biết BC = a, AC = b và AH = h
a) Tính sin C, cos C, sin 2C theo a,b,h
b) CMR sin 2C = 2 sin C. cos C
cho tam giác ABC
chứng minh rằng: \(\sin A+\sin B+\sin C< \cos A+\cos B+\cos C\)
cho tam giác ABC vuông tại A, đội dài 3 cạnh AB=c,AC=b,BC=a gọi abc = ∝. so sánh
a) tan ∝ với sin ∝/ cot ∝
b) cot ∝ với cos ∝ /sin ∝
c) tan ∝ × cot ∝ với 1
Tam giác ABC là tam giác gì nếu:\(\hept{\begin{cases}\sin B+\sin C=2.\sin A\\\cos B+\cos C=2.\cos A\end{cases}}\)
cho tam giác ABC vuông tại A , đương cao AH biết AB =15 , AC =20
a, tính BC và BH
b, Cho alpha là một góc nhọn biết : sin alpha + cos alpha = 1,4
Tính : sin mũ 4 alpha -cos mũ 4 alpha
cho tam giác ABC vuông tại A , đương cao AH biết AB =15 , AC =20
a, tính BC và BH
b, Cho alpha là một góc nhọn biết : sin alpha + cos alpha = 1,4
Tính : sin mũ 4 alpha -cos mũ 4 alpha
cho tam giác abc vuông tại a cmr
a) A=sin ^2017 . b + cos..b < 5/4
b)B= sin ^2017. b + cos ^201 .b <1
cho tam giác ABC .chứng minh
\(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}+sin\frac{B}{2}cos\frac{C}{2}cos\frac{A}{2}+sin\frac{C}{2}cos\frac{A}{2}cos\frac{B}{2}=sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}+tan\frac{A}{2}tan\frac{B}{2}+tan\frac{B}{2}tan\frac{C}{2}+tan\frac{C}{2}tan\frac{A}{2}\)