Tam giác đồng dạng

AC

Cho Δ ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB và AC. a) Chứng minh rằng: Δ AEF Δ ABC. b) Cho AH = 4,8cm; BC = 10cm. Tính SΔAEF? c) Lấy điểm I đối xứng với H qua AB. Từ B kẻ đường vuông góc với BC cắt AI ở K. Chứng minh rằng KC, AH, EF đồng quy tại một điểm.

giúp mình câu c với ạ

NT
29 tháng 8 2021 lúc 13:27

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền BA, ta được:

\(AE\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền CA, ta được:

\(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Do đó: ΔAEF\(\sim\)ΔACB

Bình luận (1)

Các câu hỏi tương tự
BZ
Xem chi tiết
HK
Xem chi tiết
DH
Xem chi tiết
NN
Xem chi tiết
QC
Xem chi tiết
HT
Xem chi tiết
AH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết