Cho tam giác ABC vuông tại A (AB<AC), AH là đường cao. Gọi D, E lần lượt là trung điểm của các cạnh AB và BC. Gọi M là giao điểm của đường thẳng vuông góc với BC tại B và đường thẳng DE. Gọi N là giao điểm của CM và AH. Chứng minh rằng:
a) ΔABC đồng dạng ΔHBA
b) AH²=BH.CH
c) N là trung điểm của AH
Cho tam giác ABC vuông tại A (AB<AC), AH là đường cao. Gọi D, E lần lượt là trung điểm của các cạnh AB và BC. Gọi M là giao điểm của đường thẳng vuông góc với BC tại B và đường thẳng DE. Gọi N là giao điểm của CM và AH. Chứng minh rằng:
a) ΔABC đồng dạng ΔHBA
b) AH²=BH.CH
c) N là trung điểm của AH
Cho tam giác AB vuông tại A, AB<AC, Ah là đường ao
a) CM: Tam giác ABC đồng dạng với tam giác HAC
b)CM: HA2 =HB.HC
c) Gọi D,E lần lượt là trung điểm của AB, BC. CM: CH=4DE
d) Gọi M là giao điểmcủa đường vuông góc BC tại B và đường thẳng DE. Gọi N là giao điểm của AH và Cm. CM: N là trung điẻm của AH
Cho tam giác ABC vuông tại A, AB < AC, AH là đường cao.
a) Chứng minh tam giác HAC đồng dạng với tam giác ABC.
b) Chứng minh HA2 = HB.HC
c) Gọi D, E lần lượt là trung điểm của AB,AC. Chứng minh CH.CB = 4DE2
d) Gọi M là giao điểm của đường thẳng vuông góc với BC tại B và đường thẳng DE. Gọi N là giao điểm của AH và CM. Chứng minh N là trung điểm của AH.
cho tam giác ABC vuông tại A, AB<AC, AH là đường cao.
a) D và E lần lượt là trung điểm của AB,BC. Chứng minh CH.CB=4DE^2
b) Gọi M là giao điểm của đường thẳng vuông góc với BC tại B và đường thẳng DE. Gọi N là giao điểm của AH và CM. Chứng minh N là trung điểm của AH
Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.
Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với BM cắt AC ở E. Gọi I là giao điểm của KG và DE. Cmr I là trung điểm của DE.
Bài 3:Cho tam giác ABC đều. Gọi M, N là các điểm trên AB, BC sao cho BM=BN. Gọi G là trọng tâm của tam giác BMN. I là trung điểm của AN, P là trung điểm của MN.Cmr:
a, tam giác GPI và tam giác GNC đồng dạng.
b, IC vuông góc với GI.
Bài 4:Cho tam giác ABC vuông tại A, đường cao AH. I là trung điểm của AC, F là hình chiếu của I trên BC. Trên nửa mặt phẳng bờ là đường thẳng chứa AC, vẽ Cx vuông góc với AC cắt IF tại E. Gọi giao điểm của AH, AE với BI theo thứ tự G và K. Cmr:
a,Tam giác IHE và tam giác BHA đồng dạng.
b, Tam giác BHI và tam giác AHE đồng dạng.
c, AE vuông góc với BI.
LÀM ƠN HÃY GIÚP MÌNH NHA. MÌNH ĐANG RẤT VỘI. THANK KIU CÁC BẠN!!!😘😘😘
Cho tam giác ABC vuông tại A (AB<AC) ,AH là đường cao
a, Cmr : ΔHAC và ΔABC đồng dạng
b, Cm :\(AH^2=HC.HB\)
c, Gọi D,E lần lượt là trung điểm của AB và AC . Cmr : CB.CH=\(4DE^2\)
d, Gọi M là giao điểm của đường thẳng vuông góc với BC tại B và đường thẳng DE . Gọi N là giao điểm của AH ,CM . Cmr : N là trung điểm của AH
Cho ∆ABC vuông tại A, AB < AC, AH là đường cao.
a) Chứng minh ∆HAC và ∆ABC đồng dạng
b) Chứng minh HA2 = HB. HC
c) Gọi D, E lần lượt là trung điểm của AB, AC. Chứng minh CH. CB = 4 DE?
d) Gọi M là giao điểm của đường thẳng vuông góc với BC tại B và đường thẳng DE. Gọi
N là giao điểm của AH và CM. Chứng minh N là trung điểm của AH.