H24

Cho tam giác ABC vuông tại A ( AB<AC ) có AD là đường trung tuyến, M và E là trung điểm của AB, AC. Gọi N đối xứng E qua M

a) Chứng minh : tứ giác AEBN là hbh

b) Qua C kẻ đường thẳng song song với AD cắt DE ở H. Chứng minh tứ giác ADCH là hình thoi 

=> Giúp e câu b với ạ 

TT
15 tháng 1 2022 lúc 17:35

a) Xét tứ giác AEBN:

+ M là trung điểm của AB (gtt).

+ M là trung điểm của EN (N đối xứng E qua M).

=> Tứ giác AEBN là hình bình hành (dhnb).

b) Xét tam giác ABC vuông tại A: AD là trung tuyến (gt).

=> AD = CD = \(\dfrac{1}{2}\) BC (Tính chất đường trung tuyến trong tam giác vuông).

Xét tam giác HEC và tam giác DEA:

+ EC = EA (E là trung điểm của AC).

\(\widehat{HEC}=\widehat{DEA}\) (đối đỉnh).

\(\widehat{HCE}=\widehat{DAE}\) (AD // HC).

=> Tam giác HEC = Tam giác DEA (c - g - c).

Xét tứ giác ADCH:

+ AD // HC (gt).

+ AD = HC (Tam giác HEC = Tam giác DEA).

=> Tứ giác ADCH là hình bình hành (dhnb).

Mà AD = CD (cmt).

=> Tứ giác ADCH là hình thoi (dhnb).

 

Bình luận (2)