a. Xét △ABC và △DAB có:
\(\widehat{BAC}=\widehat{ADB}=90^0\).
\(\widehat{DAB}=\widehat{ABC}\) (AD//BC và so le trong).
=>△ABC ∼ △DAB (g-g).
b. Xét △ABC vuông tại A có:
\(BC^2=AB^2+AC^2\) (định lí Py-ta-go).
=>\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\) (cm).
-Ta có: \(\dfrac{AB}{DA}=\dfrac{BC}{AB}\) (△ABC ∼ △DAB)
=>\(DA=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\) (cm).
-Ta có: \(\dfrac{AC}{DB}=\dfrac{BC}{AB}\) (△ABC ∼ △DAB)
=>\(DB=\dfrac{AC.AB}{BC}=\dfrac{15.20}{25}=12\) (cm)
c. Xét △AID có: AD//BC (gt).
=>\(\dfrac{BI}{AI}=\dfrac{BC}{AD}\) (định lí Ta-let).
=>\(\dfrac{AB}{AI}=\dfrac{BC+AD}{AD}\)
=>\(AI=\dfrac{AB.AD}{BC+AD}=\dfrac{15.9}{25+9}\approx4\) (cm).
\(S_{BIC}=S_{ABC}-S_{AIC}=\dfrac{1}{2}AB.AC-\dfrac{1}{2}AI.AC=\dfrac{1}{2}AC\left(AB-AI\right)=\dfrac{1}{2}.20.\left(15-4\right)=110\)(cm2)
a) Xét ` ΔABC` và ` ΔDAB` có:
`hat(BAC) = hat(ADB) = 90^0` (vì `Δ ABC` vuông tại `A` ; `BD ⊥ a ` tại `D`)
`hat(CBA) =hat(BAD)` (vì `a////BC` nên `hat(CBA)` và `hat(BAD)` là 2 góc so le trong)
`=> ΔABC ` $\backsim$ `ΔDAB` (g.g)
Vậy `ΔABC` $\backsim$ `ΔDAB` ( g.g)
b) Áp dụng định lí Py-ta-go cho `ΔABC ` vuông tại `A` ta được:
`BC^2 = AC^2 + AB^2`
`=> BC^2 = 15^2 + 20^2`
`=> BC^2 =625`
`=> BC= 25` (cm) (vì `BC > 0`)
Theo phần a ta có: `ΔABC` $\backsim$ `ΔDAB`
`=> (AB)/(DA) = (AC)/(DB) = (BC)/(AB) = 25/15 = 5/3`
Với `(AB)/(DA) = 5/3 => 15/(DA) = 5/3 => DA = 15 : 5/3 = 9` (cm)
Với `(AC)/(DB) = 5/3 => 20/(DB) =5/3 => DB = 20 : 5/3 = 12` (cm)
Vậy `BC = 20`cm; `DA = 9` cm ; `DB = 12` cm
c) Xét `ΔADI` và `ΔIBC`, theo hệ quả định lí Ta-lét ta có:
`(AI)/(IB) = (AD)/(BC) = 9/20`
`=> (AI)/9 = (IB)/20`
Mà `AI + IB = AB = 15` cm
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
`(AI)/9 = (IB)/20 = (AI +IB)/(9+20) = 15/29`
`=> AI = 15/29 . 9 =135/29` cm
`S_(AIC) = 1/2 . 135/29 .20 =1350/29 ` (`cm^2`)
`S_(ABC) = 1/2 . 15.20 =150` (`cm^2`)
`=> S_(BIC) = 150 -1350/29=3000/29` (`cm^2)`
Vậy `S_(BIC) =3000/29` (`cm^2`)