Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
Cho tam giác ABC với 3 góc nhọn. Trên nửa mặt phẳng bờ AB chứa điểm C dựng đoạn AE vuông góc với AB sao cho AE=AB. Trên nửa mặt phẳng bờ AC chứa điểm B dựng đoạn AD vuông góc với AC sao cho AD=AC (Biết rằng D và E cùng thuộc 1 nửa mặt phẳng bờ là BC). Từ A hạ đường cao AH (H thuộc BC), AH giao DE tại N. Gọi M là trung điểm của BC. BE cắt CD tại O. Gọi Bx và Cy lần lượt là tia phân giác của ^DBC và ^ECB và Bx cắt Cy tại điểm I. Lấy K là trung điểm của OI. Hãy chứng minh rằng 3 điểm M;N;K thẳng hàng ?
Cho tam giác ABC vuông tại A, M là trung điểm AC. Kẻ tia Cx vuông góc CA (tia Cx và điểm B nằm ở hai nửa mặt phẳng đối nhau bờ BC). Trên tia Cx lấy điểm D sao cho CD=AB. Chứng minh 3 điểm B ,M, D thẳng hàng
Bài 1: Cho tam giác ABC vuông tại A (AB < AC), BD là đường phân giác. Vẽ DE ⊥ BC tại E
a) Cho biết AB=9 cm, AC = 12cm, Tính BCb
b) Chứng minh tam giác DAE cân
c) Chứng minh rằng DA < DC
d) Vẽ CF vuông góc với BD tại F. Chứng minh rằng các đường thẳng AB, DE, CF đồng quy
Bài 2:
cho tam giác ABC vuông tại A ( AB<AC ) , BM là đường trung tuyến của tam giác ABC .
Trên tia đối của tia MB lấy điểm D sao cho MD=MB
a) cho biết AC = 8cm , BC = 10cm . Tính AB
b) Chứng minh : AB = CD , AC vuông góc CD
c) Chứng minh : AB + BC > 2BM
d) chứng minh : góc CBM < góc ABM
Bài 1: Cho tam giác ABC vuông tại A (AB < AC), BD là đường phân giác. Vẽ DE ⊥ BC tại E
a) Cho biết AB=9 cm, AC = 12cm, Tính BCb
b) Chứng minh tam giác DAE cân
c) Chứng minh rằng DA < DC
d) Vẽ CF vuông góc với BD tại F. Chứng minh rằng các đường thẳng AB, DE, CF đồng quy
Bài 2:
cho tam giác ABC vuông tại A ( AB<AC ) , BM là đường trung tuyến của tam giác ABC .
Trên tia đối của tia MB lấy điểm D sao cho MD=MB
a) cho biết AC = 8cm , BC = 10cm . Tính AB
b) Chứng minh : AB = CD , AC vuông góc CD
c) Chứng minh : AB + BC > 2BM
d) chứng minh : góc CBM < góc ABM
bài 1 : cho tam giác abc. trên ab, ac lấy 2 điểm m,n am/ab=an/ac sao cho amab =anac , đường trung tuyến ai(i thuộcbc)cắt mn tại k.Chứng minh km=kn
bài 2: cho hthang vuông abcd(góc a=góc d=90 độ) ab=6cm,cd=12cm,ad=17cm.trên ad đặt ae=8cm.Chứng minh góc bec=90o
bài 3: cho tam giác abc vuông tại a ac=4cm,bc=6cm. kẻ cx vuông góc vs bc(tia cx và điểm a khác phía so vs đường thẳng bc).lấy trên tia cx điểm d sao cho bd=9cm.chứng minh bd//ac
Cần gấp . Ai nhanh+đúng 3tiks
Cho tam giác ABC trong nửa mặt phẳng chứa A bờ BC, vẽ tia Cx//AB từ trung điểm E của AB vẽ đường thẳng // với BC cắt AC tại D và cắt Cx tại F đường thẳng BF cắt AC tại I
a) CM: IC2=IA.ID
b) Tính: \(\frac{ID}{IC}\)=?
Cho tam giác ABC cân tại A. Trên nửa mặt phẳng bờ AB ko chứa C, vẽ Bx vuông góc với AB tại B. Trên nửa mặt phẳng bờ AC chứa B, vẽ Cy vuông góc với AC tại C. Trên Bx, Cy lấy D, E sao cho BD=CE. M là trung điểm của DE. CM: M, B, C thẳng hàng
1) Cho tam giác AOB có AB = 18cm; OA = 12cm; OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD = 3cm. Qua D kẻ đường thẳng song song với AB cắt tia AO ở C. Gọi F là giao điểm của AD và BC.
a) Tính độ dài OC; CD
b) Chứng minh rằng FD. BC = FC.AD
c) Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại M và N. Chứng minh: OM=ON.
2) Cho tam giác ABC có AB = 8cm; AC = 12cm. Trên cạnh AB lấy điểm D sao cho BD = 2cm, trên cạnh AC lấy điểm E sao cho AE = 9cm.
a) Tính các tỉ số AE/AD;AD/AC
b) Chứng minh: tam giác ADE đồng dạng tam giác ABC
c) Đường phân giác của góc BAC cắt BC tại I. Chứng minh: IB.AE = IC.AD