H24

 Cho tam giác ABC vuông tại A, AB = 9 cm, BC = 15 cm. Trên tia đối của tia AB lấy điểm E sao cho A là trung điểm của BE.

a) Chứng minh rằng ΔABC=ΔAEC.ΔABC=ΔAEC.

b) Vẽ đường trung tuyến BH của ΔBECΔBEC cắt cạnh AC tại M. Chứng minh M là trọng tâm của ΔBECΔBEC và tính độ dài đoạn CM.

c) Từ A vẽ đường thẳng song song với EC, đường thẳng này cắt cạnh BC tại K. Chứng minh rằng ba điểm E, M, K thẳng hàng.

HN
16 tháng 5 2022 lúc 13:19

Tham khảo

a) Áp dụng định lí Pi - ta - go vào t/giác ABC vuông tại A, ta có:
BC^2 = AB^2 + AC^2
=> AC^2 = BC^2 - AC^2 = 15^2 - 9^2 = 225 - 81 = 144
=> AC = 12 (cm)
Ta có: AB < AC < BC (9 cm < 12 cm < 15 cm)
=> góc C < góc B < góc A (quan hệ giữa cạnh và góc đối diện)
b) Xét t/giác ABC và t/giác AEC
có: AB = AE (gt)
góc BAC = góc CAE = 90 độ (gt)
AC : chung
=> t/giác ABC = t/giác AEC (c.g.c)

Bình luận (2)
DA
16 tháng 5 2022 lúc 13:19

Tham khảo:

a) Xét ΔABCΔABC vuông tại A và ΔAECΔAEC vuông tại A có:

AB = AE (theo giả thiết)

AC chung

⇒ΔABC=ΔAEC⇒ΔABC=ΔAEC (2 cạnh góc vuông)

b) Do A là trung điểm của BE nên CA là đường trung tuyến ứng của 

Xét ΔBECΔBEC có CA và BH là hai đường trung tuyến cắt nhau tại M.

Do đó M là trọng tâm của ΔBECΔBEC

Do đó CM = 2323CA.

 Áp dụng định lý Pytago vào  vuông tại A:

AB2 + AC2 = BC2

 92 + AC2 = 152

 AC2 = 225 - 81

 AC2 = 144

 AC = 12 cm

Khi đó CM = CA = .12 = 8 cm.

Vậy CM = 8 cm.

c) Trên tia đối của tia KA lấy điểm N sao cho KN = KA.

Do ΔABC=ΔAECΔABC=ΔAEC (2 cạnh góc vuông) nên BC = EC (2 cạnh tương ứng) và ˆACB=ˆACEACB^=ACE^ (2 góc tương ứng).

⇒ˆKCA=ˆACE⇒KCA^=ACE^.

Do AK // EC nên ˆKAC=ˆACEKAC^=ACE^ (2 góc so le trong)

Do đó ˆKCA=ˆKACKCA^=KAC^.

ΔKACΔKAC có ˆKCA=ˆKACKCA^=KAC^ nên ΔKACΔKAC cân tại K.

Do đó KA = KC.

Mà KA = KN = 1212 AN nên KA = KN = KC = 1212 AN.

 có KA = KN = KC = 1212 AN nên  vuông tại C.

Xét ΔACNΔACN vuông tại C và ΔCAEΔCAE vuông tại A:

ˆNAC=ˆECANAC^=ECA^ (chứng minh trên).

AC chung.

⇒ΔACN=ΔCAE⇒ΔACN=ΔCAE (góc nhọn - cạnh góc vuông).

⇒⇒ AN = CE (2 cạnh tương ứng).

Mà EC = BC nên AN = BC.

Mà AN = 2AK nên BC = 2AK.

Lại có AK = KC nên BC = 2KC.

Do đó K là trung điểm của BC.

ΔBECΔBEC có M là trọng tâm, lại có K là trung điểm của BC nên E, M, K thẳng hàng.

Vậy E, M, K thẳng hàng.

Bình luận (1)
HN
16 tháng 5 2022 lúc 13:24
Bình luận (0)

Các câu hỏi tương tự
NP
Xem chi tiết
H24
Xem chi tiết
TV
Xem chi tiết
HH
Xem chi tiết
DT
Xem chi tiết
N7
Xem chi tiết
NT
Xem chi tiết
TH
Xem chi tiết
NH
Xem chi tiết