Áp dụng định lý Pitago:
\(BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\)
Do tam giác ABC vuông tại A \(\Rightarrow\) trung điểm của BC đồng thời là tâm đường tròn ngoại tiếp tam giác
\(\Rightarrow R=\dfrac{BC}{2}=\dfrac{13}{2}\left(cm\right)\)
Áp dụng định lý Pitago:
\(BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\)
Do tam giác ABC vuông tại A \(\Rightarrow\) trung điểm của BC đồng thời là tâm đường tròn ngoại tiếp tam giác
\(\Rightarrow R=\dfrac{BC}{2}=\dfrac{13}{2}\left(cm\right)\)
Cho tam giác ABC vuông cân tại A, đường cao AH. Biết AB = 5cm, BC = 6cm. a/ Tính các góc và các cạnh còn lại của tam giác ABC. b/ Dựng đường tròn tâm (O) ngoại tiếp tam giác ABC, tính độ dài bán kính của đường tròn tâm O.
Cho tam giác ABC(AB=AC) kẻ đường cao AH cắt đường tròn tâm O ngoại tiếp tam giác tại D câu a chứng minh :AD là đường kính câu b tính góc ACD câu c biết AC=AB=20cm,BC=24cm tính bán kính của đường tròn tâm (O)
Tính bán kính đường tròn ngoại tiếp tam giác ABC trong các trường hợp sau
a. Tam giác ABC có 2 cạnh góc vuông là a và b
b. Tam giác ABC vuông cân có cạnh góc vuông bằng a
Cho tam giác ABC vuông tại A, có AB = 6 cm, AC = 8 cm, đường cao AH. Vẽ đường tròn tâm O đường kính HC cắt AC tại D.
a) Tính bán kính đường tròn (O) .
b) Gọi I là trung điểm AH. Chứng minh ID là tiếp tuyến của đường tròn (O).
c) Gọi M là trung điểm của đoạn thẳng DC .Đường thẳng ID cắt các tia OM và OB lần lượt tại E và F. Chứng minh: EF.ID = IF.DE .
cho tam giác abc vuông tại c có ab = 5cm, oc=3cm, dụng đường tròn (o;oc). qua điểm c kẻ đường thẳng vuông góc với ao tại h và cắt đường tròn tâm o tại b. tính ac, ch, CM AB là tiếp tuyến của(O:OC).
cho tam giác abc có góc a bằng 90 độ. hai đường phân giác các góc B và C cắt nhau tại biết I. AB=5 AC=12. Tính độ dài bán kính đường tròn nội tiếp tam giác ABC
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 9 cm, AC = 12 cm.
a) Tính BC, AH
b) Vẽ đường tròn tâm A bán kính AH. Từ C vẽ tiếp tuyến CD với đường tròn tâm A (D là tiếp điểm). Đường thẳng DH cắt AC tại I. Chứng minh \(IA\cdot IC=\dfrac{DH^2}{4}\)
c) Đường thẳng DA cắt đường tròn tâm A tại điểm thứ hai là E. Chứng minh BE là tiếp tuyến đường tròn tâm A.
Cho tam giác ABC vuông tại A có AB = 8cm,AC = 15cm.Vẽ đường cao AH.Gọi D là điểm đối xứng của B qua H.Vẽ đường tròn đường kính CD cắt AC ở E.Chứng minh HE là tiếp tuyến của đường tròn
Cho tam giác ABC vuông tại A có AB = 8cm,AC = 15cm.Vẽ đường cao AH.Gọi D là điểm đối xứng của B qua H.Vẽ đường tròn đường kính CD cắt AC ở E.Chứng minh HE là tiếp tuyến của đường tròn
Cho tam giác ABC vuông tại A có AB = 8cm,AC = 15cm.Vẽ đường cao AH.Gọi D là điểm đối xứng của B qua H.Vẽ đường tròn đường kính CD cắt AC ở E.Chứng minh HE là tiếp tuyến của đường tròn