DN

Cho tam giác ABC vuông cân tại A. m là trung điểm của BC. E là 1 điểm nằm giữa M và C. Qua B kẻ BH vuông góc với AE, qua C kẻ CK vuông góc với AE (H và K thuộc đường thẳng AE)

a. Chứng minh rằng: tam giác HAB = tam giác KCA.

b. Chứng minh: tam giác AMC cân, vì sao?

c. Chứng minh: MH vuông góc với MK.

NN
4 tháng 1 2022 lúc 18:56

a. Xét tam giác BAH và tam giác CAK

BHA= CKA=90*

BA=AC (gt)

BAH=CAK ( cùng phụ với HAC)

=> tam giác BAH=tam giác CAK( ch-gn)

=> BH=AK (2 cạnh tương ứng)

b. Gọi I là giao điểm của AM và KC

Vì BH vg AH; Ck vg AH => BH// CK

=> HBM=KCM (so le trong )

Do tam giác IMC vuông tại M => MIC+MCI= 90*

Lại có tam giác AKI vuông tại K nên KAI+KIA=90*

Mà KIA= MIC( đối đỉnh)=> MIC= AKI hay MCK= KAM => AKM = MBH

Xét tam giác BHM và tam giác AKM

BH= AK ( theo câu a)

HBM= AKM( c/m trên)

BM = AM ( AM là trung tuyến tam giác vuông)

=> tam giác BHM= tam giác AKM(cgc)

c. Theo câu b, 

tam giác BHM= tam giác AKM(cgc)

=> HM= KM(2 cạnh tương ứng)

Ta có BMK+KMA=BMA=90*

Mà HMB= KMA=> BMK+HMB=90*=HMK

Xét tam giác KMH có: HMK=90*; HM=KM => tam giác KMH vuông cân tại M

Bình luận (1)

Các câu hỏi tương tự
EG
Xem chi tiết
DB
Xem chi tiết
H24
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết
CA
Xem chi tiết
LA
Xem chi tiết
NP
Xem chi tiết