LN

cho tam giác ABC và I là giao điểm của 3 đường phân giác. Gọi H là chân đường vuông góc kẻ từ B đến AI. Chứng minh IBH=ICA

H24
24 tháng 5 2020 lúc 7:38

Vì BI và CI là phân giác => AI cũng là phân giác
Ta có \(\widehat{\text{BAI}}=\widehat{CAH}=\frac{\widehat{BAC}}{2}\) ( AI là phân giác)
\(\widehat{\text{ACI}}\)=\(\widehat{\text{BCI}}\)=\(\frac{\widehat{\text{ACB}}}{2}\)(CI là phân giác)
\(\widehat{\text{ABI}}=\)\(\widehat{\text{CBI}}=\)\(\widehat{\frac{\text{ABC}}{2}}\) (BI là phân giác)
Xét tam giác vuông \(AHB\Rightarrow\widehat{IAB}+\widehat{ABH}=90^0\)\(\text{AHB => IAB + ABH = 90}\)
\(\Rightarrow IAB+ABI+IBH=90^0\)
\(\Rightarrow IBH=90^0-\left(IAB+ABI\right)\left(1\right)\)
Xét \(\Delta ABC\)\(\widehat{\text{BAC}}\)\(+\widehat{\text{ABC}}\)\(+\widehat{\text{ACB}}\)\(\text{= 180}^0\)
\(\Rightarrow\frac{\left(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}\right)}{2}=\frac{180^0}{2}=90^0\)
\(\frac{\widehat{BAC}}{2}+\widehat{\frac{ABC}{2}}+\frac{\widehat{ACB}}{2}=90^0\)
Lại có \(\widehat{\text{BAI}}\) \(=\widehat{\text{CAH}}\) \(=\frac{\widehat{BAC}}{2}\)  \(;\widehat{\text{ABI}}\)\(=\widehat{\text{CBI}}=\)\(\frac{\widehat{\text{ABC}}}{2}\) và \(\widehat{\text{ABI}}=\)\(\widehat{\text{CBI}}\)\(=\widehat{\frac{\text{ABC}}{2}}\)
\(\Rightarrow\) \(\widehat{\text{IAB}}\) +\(\widehat{\text{ ABI}}\)\(\widehat{\text{ACI}}=90^0\) 
\(\Rightarrow\widehat{\text{ACI }}=90^0-\left(\widehat{IAB}+\widehat{ABH}\right)\left(2\right)\) 
Từ (1) và (2) => \(\widehat{\text{IBH}}=\widehat{ACI}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
24 tháng 5 2020 lúc 9:43

A B H C I

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
LN
Xem chi tiết
PG
Xem chi tiết
MS
Xem chi tiết
VD
Xem chi tiết
PB
Xem chi tiết
TT
Xem chi tiết
NH
Xem chi tiết
TP
Xem chi tiết
NA
Xem chi tiết