Cho tam giác ABC và điểm M thỏa \(\overrightarrow{MA-}\overrightarrow{MB}-\overrightarrow{MC}=\overrightarrow{0}\)Mệnh đề nào sau đây đúng ?
A. M là trung điểm BC
B. M là trung điểm AB
C. M là trung điểm AC
D. ABMC là hình bình hành.
Cho hình chữ nhật ABCD cố định tâm O và điểm M thỏa \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=\overrightarrow{AB}+\overrightarrow{AD}\)
Mệnh đề nào sau đây đúng ?
A. M là trọng tâm tam giác ABD
B. M là trung điểm OA
C. ABMD là hình bình hành
D. M là trung điểm OC
Mong mọi người giúp đỡ ạ
Cho tam giác ABC
1/ Xác định I sao cho \(\overrightarrow{IB}+\overrightarrow{IC}-\overrightarrow{IA}=0\)
2/ Tìm điểm M thỏa mãn \(\overrightarrow{MA}-\overrightarrow{MB}+2\overrightarrow{MC=0}\)
Cho tam giác ABC cố định và G là trọng tâm tam giác. Tập hợp điểm M thỏa \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=a\) vs a<0 là:
A. Trung điểm BC
B. Đường tròn tâm G , bán kính bằng a.
C. Đường tròn tâm G , bán kính bằng \(\dfrac{a}{3}\)
D. Đường tròn tâm M, bán kính bằng \(\dfrac{a}{3}\)
cho âm giác ABC :
I là một điểm thỏa mãn: \(\overrightarrow{IA}+3\overrightarrow{IB}-2\overrightarrow{IC}=\overrightarrow{0}\)
xác định tập hợp các điểm M thỏa mãn :
a, \(|\)\(\overrightarrow{MA}+3\overrightarrow{MB}-2\overrightarrow{MC}|=|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}|\)
b, 2\(|\)\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}|=|\overrightarrow{MA}+2\overrightarrow{MB}+3\overrightarrow{MC}|\)
Cho ΔABC. Gọi 2 điểm M, N thay đổi và thỏa mãn:
\(\overrightarrow{MN}=2\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}\)
Chứng minh MN luôn đi qua 1 điểm cố định
cho tam giác ABC và I thỏa mãn : \(\overrightarrow{IA}-2\overrightarrow{IB}+4\overrightarrow{IC}=\overrightarrow{0}\)
a, phân tích \(\overrightarrow{IA}\) theo \(\overrightarrow{AB};\overrightarrow{AC}\)
b gọi G là trọng tâm tam giác, J thỏa mãn \(\overrightarrow{AJ}=\dfrac{2}{3}\overrightarrow{AB}\)
chứng minh : I,J,G thẳng hàng
cho tam giác ABC. Tìm tập hợp các điểm M thỏa mãn:
a) \(\left|\overrightarrow{MA}-\overrightarrow{CA}\right|=\left|\overrightarrow{MA}+\overrightarrow{AB}+\overrightarrow{AC}\right|\)
b) \(\left|\overrightarrow{MB}+\overrightarrow{CA}\right|=\left|\overrightarrow{MC}-\overrightarrow{MB}\right|\)
Cho ΔABC. Tìm điểm M thỏa mãn:
a) |\(\overrightarrow{MA}+2\overrightarrow{MC}-\overrightarrow{MC}\)| = |\(\overrightarrow{MB}-2\overrightarrow{MC}\)|
b) \(\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{AC}\)