· Cho tam giác ABC , phân giác AD. Trên nửa mặt phẳng có bờ BC không chứa điểm A vẽ tia Cx sao cho góc BCx bằng góc BAD, Cx cắt AD tại E. C/m a, Tam giác ADB đồng dạng vớ
Cho tam giác ABC có góc A tù. Trên nửa mặt phẳng bờ AB không chứa điểm C vẽ tia Ax vuông góc với AB, trên tia Ax lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng bờ AC không chứ điểm b vẽ Ay vuông góc với AC, trên tia Ay lấy điểm E sao cho AE=AC. Gọi M là trung điểm cạnh BC. Chứng minh rằng 2AM=DE
cho tam giác ABC, đường phân giác AD, trên nửa mặt phẳng bờ BC ko chứa A vẽ tia Bx sao cho góc BAD =góc CBx. gọi M là giao điểm của AD và Bx
a)c/m tam giác MBD đồng dạng vs tam giác MAB
b)vẽ tia phân giác góc ABC cắt AD ở I .C/M tam giác MBI cân
c)từ M vẽ đường thẳng vng góc vs MA cắt đường cao xuất phát từ A của tam giác ABC tại E ,cắt BC tại F. c/m tam giác EIF vuông
Cho tam giác ABC (AB<AC), phân giác AD. Trên nửa mặt phẳng bờ BC không chứa điểm A, vẽ tia Cx sao cho góc BCx = góc BAD. Gọi I là trung điểm của Cx và AD.
Chứng minh: a) tam giấc ADB đồng dạng với tam giác ACI; tam giấc ADB đồng dạng với tam giác CDI
b) AD^2=AB.AC-DB.DC
Cho tam giác ABC phân giác AD. Trên nửa mặt phẳng không chứa A bờ BC, vẽ tia Cx sao cho = . Cx cắt AD tại E ; I là trung điểm DE. Chứng minh rằng :
a. đồng dạng với b. AE2 > AB.AC
c. 4AB.AC = 4AI2 – DE2 d.Trung trực của BC đi qua E
Cho tam giác ABC có AM là đường trung tuyến . Trên nửa mặt phẳng bờ AB có chứa điểm C vẽ tia Ax song song với BC . Trên tia Bx lấy điểm D sao cho AD =BC . Gọi N là trung điểm cạnh AB . Chứng minh rằng các đường thẳng AM , BD , CN đồng quy
Cho tam giác ABC với 3 góc nhọn. Trên nửa mặt phẳng bờ AB chứa điểm C dựng đoạn AE vuông góc với AB sao cho AE=AB. Trên nửa mặt phẳng bờ AC chứa điểm B dựng đoạn AD vuông góc với AC sao cho AD=AC (Biết rằng D và E cùng thuộc 1 nửa mặt phẳng bờ là BC). Từ A hạ đường cao AH (H thuộc BC), AH giao DE tại N. Gọi M là trung điểm của BC. BE cắt CD tại O. Gọi Bx và Cy lần lượt là tia phân giác của ^DBC và ^ECB và Bx cắt Cy tại điểm I. Lấy K là trung điểm của OI. Hãy chứng minh rằng 3 điểm M;N;K thẳng hàng ?
b1. Cho tam giác ABC không cân ở A có AD là phân giác. Trên nửa mặt phẳng không chứa A có bờ là BC, vẽ tia Cx sao cho góc BCx bằng nửa góc BAC. Tia Cx cắt AD ở E. Gọi I là trung điểm của DE. CM:
a/ EC^2=ED.EA và tam giác ABD đồng dạng với tam giác AEC.
b/ AE^2 > AB.AC và AD^2=AB.AC - BD.DC
c/ Trung trực của BC đi qua E
d/ 4AB.AC=4.AI^2 - DE^2
e/ AE.BC=AC.EB + AB.EC
g/ AE=AB+AC và 1/AD = 1/AB + 1/AC nếu góc BAC là 120 độ
h/ tam giác CAD cân nếu AB=16cm, AC=12cm và Bc=14cm
2. Cho tam giác ABC đều có trung tuyến AM. Vẽ đường cao MD của tam giác AMC
a. Chứng minh tam giác ABM đồng dạng với tam giác AMD
b. Gọi E, F lần lượt là trung điểm BM, MD. Chứng minh AE.AF=AM.AE
c. Chứng minh AF vuông góc với BD
d. Chứng minh AE.EM=BD.DC
CHO TAM GIÁC ABC BIẾT AB=5, AC=6, BC=7 AD LÀ ĐƯỜNG PHÂN GIÁC BAC
A) TÍNH DB,DC(LÀM TRÒN ĐẾN THẬP PHÂN THỨ 1)
B) TRÊN NỬA MẶT PHẲNG BỜ BC KHÔNG CHỨA A, VẼ TIA CX//AB CẮT TIA AD TẠI M. CHỨNG MINH TAM GIÁC ABD ĐỒNG DẠNG MCD