a) Xét \(\Delta ABD\) và \(\Delta AED\) có :
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
=> \(\Delta ABD\) =\(\Delta AED\) (c-g-c)
=> DE=DB ; \(\widehat{ABD}=\widehat{AED}\)
b)Có : \(\widehat{ABD}+\widehat{MBD}=180^o\)
\(\widehat{AED}+\widehat{DEC}=180^o\)
mà \(\widehat{ABD}=\widehat{AED}\) => \(\widehat{MBD}=\widehat{DEC}\)
Xét \(\Delta MDBvà\Delta CDE\) có :
\(\widehat{MBD}=\widehat{DEC}\)
DE=DB
\(\widehat{MBD}=\widehat{CDE}\)
=> \(\Delta MDB=\Delta CDE\left(g-c-g\right)\)
c) Có : AB=AE ( \(\Delta ABD\) =\(\Delta AED\) )
MB=CE(\(\Delta MDB=\Delta CDE\))
=> AB+BM=AE+EC
=> AM=AC
=> \(\Delta MAC\) cân tại A
mà AD là tia phân giác của góc A
=> AD là đường cao của \(\Delta MAC\)
=> \(AD\perp MC\)